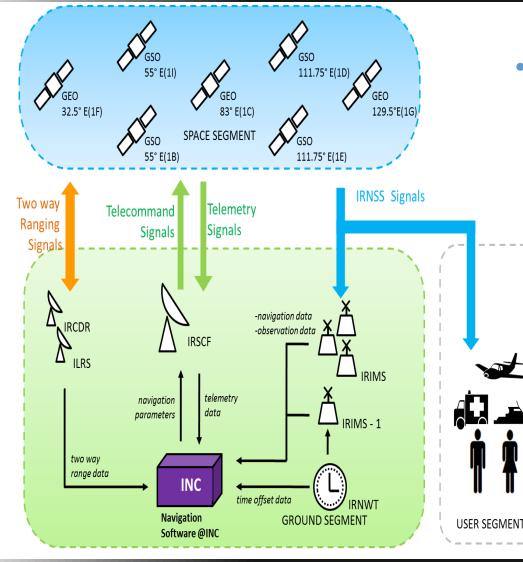


Orbit Determination using Two way measurements and Extended Ephemeris of NavIC Satellites

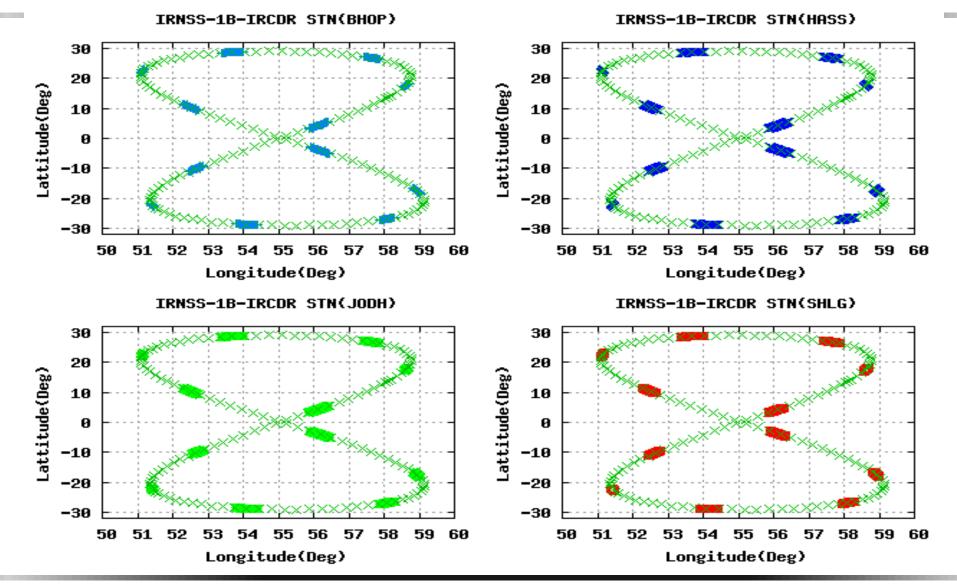
A.Kartik , Kalpana Samal, Rajarajan


Indian Space Research Organization (ISRO)

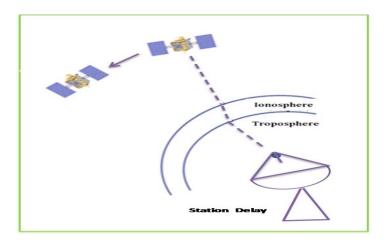
12-12-2019 ICG-1<mark>4, Be</mark>ngaluru

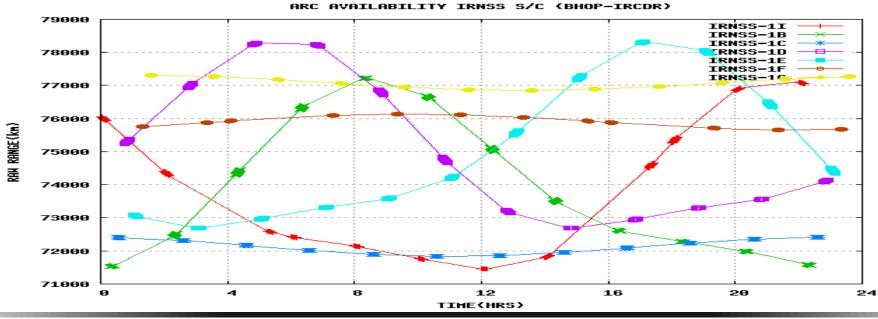
Introduction To NavIC System

- Measurements System:
 - One-way Range measurement from IRIMS has Receiver /Satellite clock and other errors
 - ≻Two-way Range measurement
 - from IRCDR , which is
 - independent of clock errors



- Two-way Data: Range and Ground Station calibration data from four Two-way Ranging stations (IRCDR) for each operational NavIC s/c is used.
 - ➢For each NavIC S/c, data arc of 10-12min/2hr is available from each IRCDR station.
 - ➤Ground station zero range calibration data of 5min/2hr is available

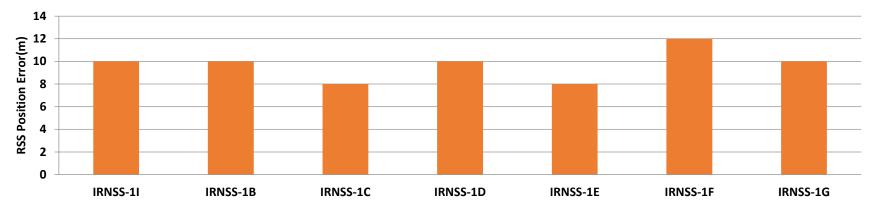




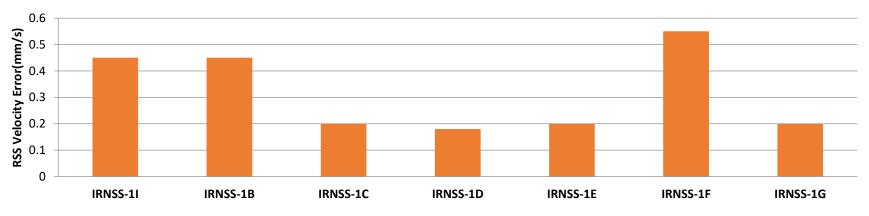
- Measurement Processing :
 - **Removal of Outliers**
 - **>IRCDR Station Delay Correction**
 - **≻Iono-delay Correction**
 - ➤Tropo-delay Correction
- Processed Range availability for OD

- Dynamic Orbit Determination in NavIC Navigation Software
- Estimation:
 - Estimator : Least square
 - ≻Mode : Batch processing
 - ≻Span of data used : 3days
 - Number of parameters: X, Y, Z, Xdot, Ydot, Zdot + 9 empirical Accelerations
- Measurement models:
 - Satellite Antenna Phase Centre Correction
 - **>IRCDR** Antenna Phase Centre Correction
 - ≻Station Bias estimation: Arc-wise station bias estimation

- Dynamic Orbit Model:
 - **Earth Gravity : EGM 2008(21X21)**
 - **>**N-body gravitation: JPL DE405(Sun, Moon and Other planets)
 - Solid Earth tide and Earth pole tide: IERS Conventions 2010
 - Ocean Tide and Ocean pole tide : IERS Conventions 2010
 - Relativistic effects : IERS Conventions 2010
 - >Atmosphere drag : Not Considered
- Reference Frame:
 - ≻Coordinate system : WGS 84
 - >Precession/Nutation: IAU 2006/IAU2006A model
 - **Earth rotation parameters : IERS final EOP products**

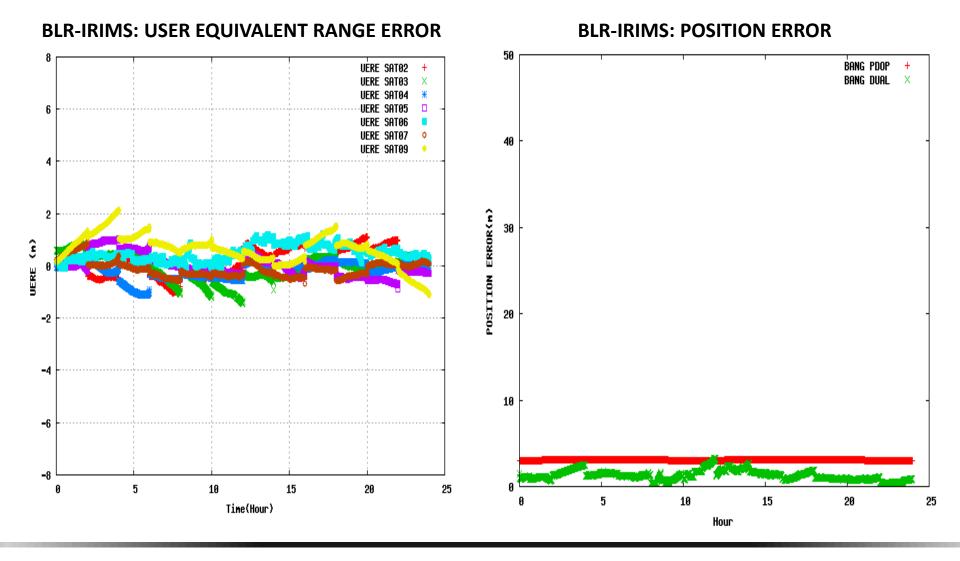


NavIC OD Using Two-Way Data – Results



ORBIT OVERLAP ERROR

RSS Pos Error(m) with σ =2m



RSS Vel Error(mm/s) with σ =0.1mm/s

12/27/2019

ISRO

• To generate and disseminate extended ephemeris for NavIC satellites with longer usage period for SPS users of NavIC

Benefits

- To Provide Faster Time To First Fix(TTFF) through Extended (Longer Validity) Ephemeris under Following Adverse Conditions
 - Frequent Loss of Lock leads to loss of Broadcast Ephemerides(Poor signal Environments)
 - Cold Start of the receiver
- Faster TTFF under nominal Conditions with reasonable accuracy(20 to 100meters in position)

- NavIC satellites Broadcast Navigation Data and PRN codes to users to enable PVT fix.
- Navigation Data of SPS users Consists of
 - Ephemerides(Orbital State+ Clock Coefficients+URA+TGD..etc)
 - Almanac, Iono-Grid Parameters/ Klobaucher Coefficients, EOP(Earth-Orientation Parameters), Inter-Signal Corrections, and IRNWT offset etc.
- Ephemerides(Also called Primary Navigation Parameters) are broadcast at an interval of 48seconds and valid for short duration of 2hours
- Acquisition and Tracking takes about 3 seconds

Parameters	Message ID	Broadcast Interval
Iono-Grid Parameters	MT5	5mins
Klobaucher & EOP	MT11	10mins
Almanac	MT7	20mins
IRNWT offsets	MT26	20mins

• Inputs for PVT

• Ephemerides

• Pseudo-Range

TTFF - Components

- T = Tack + Ttracking + Teph + Tsol.
- Tack Acquisition
- Ttrack Tracking
- Teph Ephemerides Collection Time
- T_{sol} Solution computation duration

Teph is about 90% of Total TTFF

Nav. Data	Tinit sec	Tacq Sec	Tbsyn sec	Tvitb sec	Teph sec	Tpos sec	Total TTFF (T) (sec)	Tnav/ T
Broadcast	1	3	1	0.5	48	1	54.5	88%

- Least square Fit
- Fit Interval 8 Hours (3 sets per day)
- Two Types of Informations
 - Ephemeris
 - Events data
- Ephemeris Types

Ephemeris Type	Prediction Period	Update Interval	No. of sets	Size of data/satellite
1	24 Hours	Everyday	3	0.2KB
2	7 days	Once / week	21	1KB
3	21 days	Once /Week	84	4.2KB

- Event Data
 - S/C Manoeuvre info.
 - Clock Jump info.
 - Planned S/C Maintenance, if any

Enhancement with Additional New Parameters

Extended Ephemeris includes all parameters of Subframes 1 and 2 with the following additional parameters to provided enhanced performance

S.NO	SUB-FRAME Data	Notation
1	Ephemerides Validity Period	E_VP
2	Time Of Differential Corrections	t _{od}
3	Diff. Cor. Validity Period	DC_VP
4	Issue of data Differential Correction	IODDC
5	Issue of data Differential Cor. and Ephemeris	IODDE
6	Alpha correction to ephemeris parameters	Δα
7	Beta correction to ephemeris parameters	Δβ
8	Gamma correction to ephemeris parameters	
9	Angle of inclination correction	Δi
10	Events Data	ED_MSG

Expected Performance of Extended Ephemeris-TTFF

Nav. Data Tinit **Total TTFF** Tacq Tbsyn **Tvitb** Teph **Tpos** (sec) Sec sec sec sec sec sec **Broadcast** 1 3 1 0.5 48 1 54.5 3 0.5 6.5 Ext. Eph. 1 1 0 1

WORST CASE

Nav. Data	Tinit sec	Tacq Sec	Tbsyn sec	Tvitb sec	Teph sec	Tpos sec	Total TTFF (sec)
Broadcast	1	3	1	0.5	60	1	66.5
Ext. Eph.	1	3	1	0.5	0	1	6.5

BEST CASE

- >Two-way range measurements accuracy $\sim 0.3m (2\sigma)$
- Achieved orbit accuracy is ~ 8m-12m (3σ RSS) over a day based on the overlap analysis

>Utilization:

- Estimated orbital parameters from Two-way measurements are used to generate the NavIC navigation parameters
- Additional data with long base line is expected to improve the orbit accuracy
- ➢Using Extended ephemeris 90% reduction in TTFF w.r.t broadcast under Initial Position Fix
- >Lot of new applications possible
 - Mobile Phones
 - Activity trackers and eHealth
 - Wearables Technologies

