

Extended Kalman Filter Based Onboard Orbit Determination Using GNSS Receiver For LEO And GEO Satellites

Neetha Tirmal Dr Prasanta Mula, Kavitha S, Chandrasekhar M V, Anudit Kala

Indian Space Research Organization (ISRO)

ICG-14, Bengaluru

Introduction

Objective

Instantaneous smooth and precise estimation of LEO/GEO satellite position and velocity in near real time using single/dual frequency code and carrier phase GPS measurements based on Extended Kalman Filter (EKF) with reduced dynamic method for onboard implementation

Scope

- Precise knowledge of LEO orbit required for remote sensing missions and in science mission applications
- ✓ ECEF based reduced dynamic EKF to cater to this requirement, with limited time and resources available on-board of LEO satellites
- ✓ Extension of this technique to autonomous precise orbit estimation of GEO satellites

Accuracy

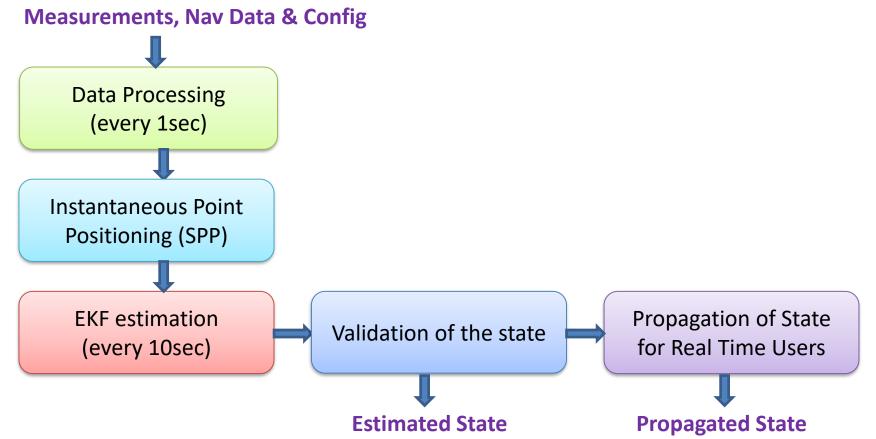
Using dual frequency code and carrier	Using Single frequency code and carrier	
phase measurements (LEO)	phase measurements (LEO)	
Instantaneous accuracy: 1-2 m (position) and < 4-5mm/s (velocity) Prediction Period: < 2-5m Position Error (LEO) in 1 hour	Instantaneous accuracy: 2-3 m (position) and < 5-6mm/s (velocity) Prediction Period: < 5-7m Position Error (LEO) in 1 hour	

Methodology

Estimation Data processing Outlier detection of range measurements Estimated parameters (states -X) are Cycle Slip detection using rate of L4 & L6 ►LEO Satellite Position measurements. ► LEO Satellite Velocity Dual - Compute P3 and L3 lono error free LEO Satellite Clock Bias combination Reflectivity (Cr) and ballistic (Cd) Coefficient Single - Compute Iono error free combination Residual acceleration in 3 R,T,N directions of orbit (P1+L1)/2Integer ambiguity (at every LOS) Smoothening of P3 $X(t)_{44} = (x, y, z, v_x, v_y, v_z, b_0, Cr, Cd, R, T, N, ...)^{T}$

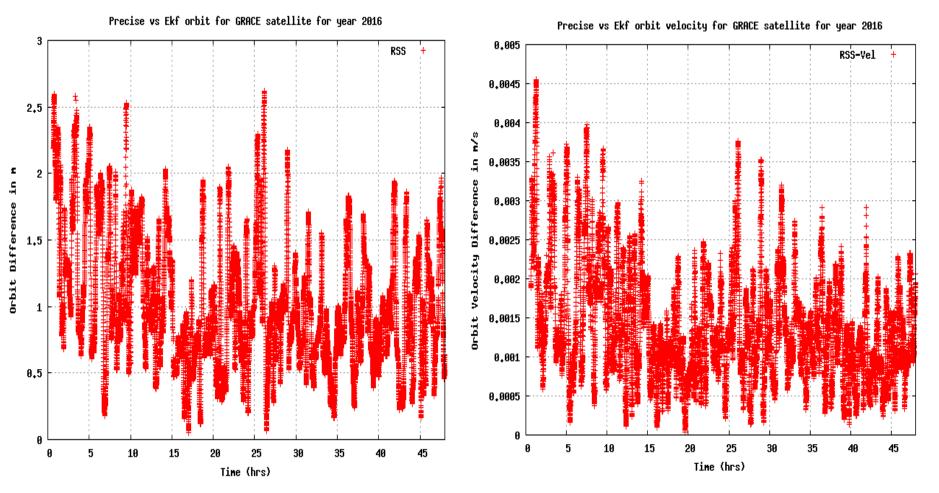
Range Modelling

Modelled Receiver related, Satellite related and Transmission related errors, viz.,


- Relativistic errors due to Earth and satellite motion (Sagnac Effect)
- ✓ Satellite and receiver clock offsets
- Antenna phase centre offsets, variations and biases

Details of Orbit Model		
ECEF		
EGM 2008		
Sun, Moon Empiricial Formula		
Harris-Priester		
Empirical SRP model		
Mathematical formulation		
Runge-Kutta (4 th order)		
Coriolis, Centrifugal		

12/27/2019



Environment:

TSIM Simulator Evaluation used for onboard environment simulation Software execution with 40MHz Proc Speed, 4MB RAM & H/w FPU

EKF Vs Precise Estimated orbit of GRACE satellite using dual frequency carrier phase measurements

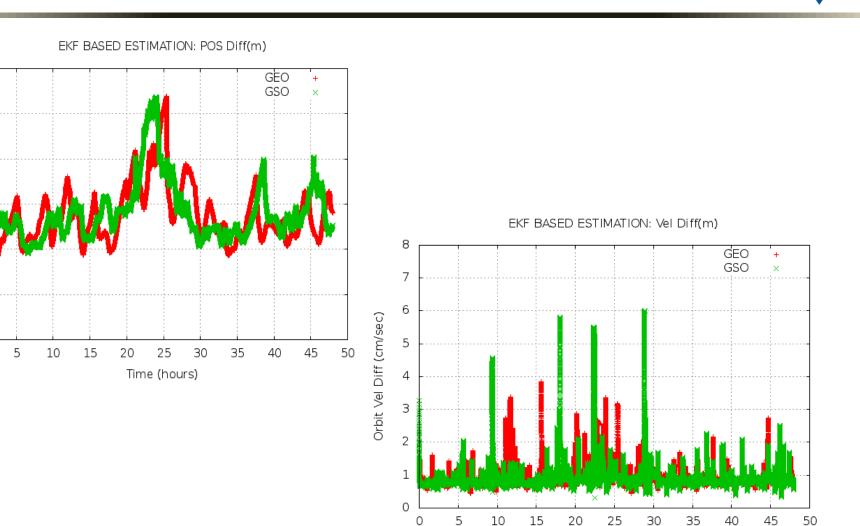
50

40

30

20

10


0

-10

0

Orbit Pos Diff (m)

Sample Results (GEO/GSO Satellite)

Sum	mary
-----	------

Spacecraft	Single (Code +Carrier)	Dual (Code + Carrier)
GRACE	Pos.: 2.1m Vel.: 3.5 mm/s	Pos.: 1.2m Vel.: 2.5 mm/s
COSMIC	Pos.: 1.8m Vel.: 3.5mm/s	Pos.: 0.8m Vel.: 1.6 mm/s
NAVIC GEO	_	Pos.: 12.1 m Vel.: 0.9 cm/s
NAVIC GSO	-	Pos.: 12.4 m Vel.: 1.1 cm/s

- Continuous smooth orbit solution availability, even when the number of GPS measurements is less than 4 (which is the minimum requirement for SPS solution)
 - ➢The measurement update have been done sequentially at every Line of Sight (LOS)
 - Filter initialization will be happen with Onboard solution or SPP solution(with velocity derived using multiple points interpolation)
 - Estimation have been done at an interval with best smooth measurements
 - Validation of the filter estimated state using SPP and onboard solution
- Outages of up to 60 minutes can be handled onboard LEO satellites with an accuracy of 2 to 5 m

