advisory company

Potential Synthetic Aperture Radar applications of small satellites

United Nations / South Africa Symposium on Basic Space Technology "Small satellite missions for scientific and technological advancement"

Presented by: M. Inggs (Principal Radar Systems Engineer, SAC, Emeritus Prof. UCT)

Date:

12th December 2017 Stellenbosch

Overview

Aspects of SAR Operation

- Basic Radar theory and mechanics of Synthetic Aperture Radar (SAR).
- Why SAR from Space?
- Applications of Spaceborne SAR.
- SAR Wars

Brief introduction to Radar and SAR

dvisory company

Radar

- Repeated burst of EM waves: carrier wavelength of 1 cm to 23 cm (Ka Band down to L Band).
- Resolution determined by modulation bandwidth of pulse, typically Linear Frequency Modulated, bandwidth **B**.
- Range resolution is $\delta \mathbf{R} = \mathbf{c} / \mathbf{2} \mathbf{B}$
- Sensitivity depends on **Energy** radiated and **aperture** size.
- Received signals compete with thermal noise from receiver and the environment (some man-made).
- Moving targets result in a Doppler shift.
- Detection ability falls with the fourth power of range to target.
- Range is measured by time delay to target and back.
- Beamwidth of a real aperture antenna determined by λ/D

Side View

Synthetic Aperture Formation

- An antenna of dimension d results in a beamwidth of θ = *N*d.
- A real azimuth antenna pattern results in an along track or azimuth resolution that is poor unless the azimuth dimension is extremely large (especially from space).
- The azimuth resolution degrades with range $(\delta x = R \theta)$, thus:
 - Store the range echoes in the azimuth direction.
 - For each range resolution cell, form a synthetic, large aperture antenna.
 - Results in a synthetic, narrow beam view of the swath.
- Can be shown that the best azimuth resolution is $\delta x = I_a / 2$, where I_a is the azimuth dimension of the real antenna.
- Sensitivity depends on Energy and Aperture as before, but decreases with cube of range, since many samples are added to form the synthetic aperture.

Point and Distributed Targets

- A point target backscatter is measured by its "radar cross section", σ₀ [m²].
- A distributed target is measured by σ⁰ [m²/m²] i.e. the backscatter per illuminated area. Example, a field of maize, rocky, flat terrain.
- The backscatter depends on incidence angle.
- The backscatter for SAR is the vector sum of a large number of scatterers in the resolution cell.
- Results in a magnitude that fluctuates from cell to cell, even for a uniform target area: called "**speckle**".
- Characteristic of all coherent imaging systems.

SAR key parameters

- The range and azimuth resolution of the sensor is specified. Generally the processing is arranged so that these are equal, i.e. "square pixels".
- The probability of detection (\mathbf{P}_d) of a single object within a resolution cell, with given probability of false alarm (\mathbf{P}_{fa}) should be stated.
 - This is import when detecting, for example, vehicles in a field, ships on the ocean.
- The value of "Sigma Zero" when a resolution cell's response is equal to the system noise floor is known as the "Noise Equivalent Sigma Zero" (NESZ).
 - This is important when discriminating against different types of surface being imaged, for classification.
- More technical are the **ambiguities** caused during image formation: discussed in a more advance forum.

Why SAR from Space?

Imaging with Radar from Space

EM wave advantages

- Penetrates cloud and hardly affected by rain.
- Can detect moving targets i.e. discriminate against a background.
- Millimetric changes in phase between consecutive images can be used for change detection.

Free Access to all of the Earth's Surface

- Day / night operation (own illumination).
- Not restricted by aircraft operational limitations (range, airspace control).
- No legislative control

Applications of SAR

advisory company

Numerous SAR Applications

- Cryosphere
 - Ice / snow
 - Navigation
- Land
 - Vegetation
 - Geology / Tectonics
 - Land Use
 - Change detection
- Oceans
 - Currents
 - Wind and Waves
 - Maritime Domain Awareness

Information contained is Confidential and Proprietary.

SPACE ADVISORY COMPANY (PTY) LTD [SAC]

3-d modelling (digital elevation Model).

Tomography (Urban Modelling).

Differential Interferometry (for tectonic analysis).

Images © DLR and ESA

Information contained is Confidential and Proprietary.

Repeat pass inteferometry.

Brief History of Spaceborne SAR

SAR in Space

- NASA
 - SEASAT 1978
 - SIR A/B/C
- German Government and Industry
 - DLR Tandem X
 - PPP TerraSAR X
 - Military SAR Lupe
- European Countries
 - ESA ERS1/2
 - ESA Envisat
 - ISA COSMO Skymed
 - Russia, India, Japan
 - Now, "SAR Wars", the march of the miniature systems.

a dvisory company

SPACE ADVISORY COMPANY (PTY) LTD [SAC]

							IVIASS!
Satellite	Agency/Country	Year	Band	Az Res	Range Res	Pol	Weight
SEASAT-SAR	NASA/USA	1978	L	6	25	HH	2290
SIR-A1	NASA/USA	1981	L	7	25	НН	
SIR-B1	NASA/USA	1984	L	6	13	HH	
ERS-1/2	ESA	1991/1995	С	5	25	VV	2400
ALMAZ-1	USSR	1991	S	8	15	НН	3420
НН	(payload)						
JERS-1 SAR	NASDA/Japan	1992	L	6	18	НН	1400
SIR-C/X-SAR1	NASA/USA	1994	C/L	7.5	13	quad	11000
	DLR/Germany/ASI/Italy		Х	6	10	VV	(approx.)
RADARSAT-1	CSA/Canada	1995	С	8	8	НН	3000
	NASA/USA	2000	С	15	8	dual	13600
SKIIVII	DLR/Germany		Х	8	19	VV	(payload)
ENVISAT-ASAR	ESA	2002	С	10	30	dual	8211
ALOS-PALSAR	JAXA/Japan	2006	L	5	10	quad	3850
SAR-Lupe (5)	Germany	2006–2008	Х	0.5	0.5	quad	770
RARDASAT-2	CSA/Canada	2007	С	3	3	quad	2200
Cosmo-SkyMed (4)	ASI/Italy	2007–2010	Х	1	1	quad	1700
TerraSAR-X	DLR/Germany	2007	Х	1	1	quad	1230
TanDEM-X	DLR/Germany	2009	Х	1	1	quad	1230
RISAT-1	ISRO/India	2012	С	3	3	dual	1858
HJ-1-C	China	2012	S	5	20	VV	N/A
KOMPsat 5	KARI/South Korea	2013	Х	1	1	quad	1400
Sentinel 1A/B	ESA	2014/16	С	5	5	dual	2300
ALOS 2	JAXA/Japan	2014	L	1	3	quad	2120
PAZ	Hisdesat/Spain	2015	Х	1	1	quad	1230

The "SAR Wars"

SPACE ADVISORY COMPANY (PTY) LTD [SAC]

a dvisory company

SAR Performance

- Resolution
- Coverage per orbit, per day, per month, often quoted in terms of swath width.
- Target detection Signal to Noise (SNR)
- Area sensitivity: Noise Equivalent Sigma
 Zero (NESZ)
- Ambiguity rejection
- Illumination angle across the swath
- Specialist high resolution modes (spotlight mode)

The "SAR Wars"

a dvisory company

The "SAR Wars"

Capella Space

- No published specifications
- Launch in 2017 (83 days to go...)
- More than USD 12m in venture capital.
- "Hourly images of anywhere on earth".
- Detect millimetre surface deformations.
- 36 satellites
- Below 50 kg satellite
- 1 m resolution

Urthecast

- The OptiSAR (trademark) Constellation comprises 8 tandem pairs of SAR and Optical Satellites divided into two orbit planes.
- The 4 tandem pairs will be equi-spaced around an orbit plane, where each tandem pair consists of a leading SAR satellite, which uses UrtheCast's SAR-XL technology for its payload.
- A trailing Optical satellite that is following approximately 2 minutes behind the SAR satellite..
- Phased array technology.
- Narrow strips (7 km) but out to 140 km in scansar.
- Resolution around 1 m X 1 m.
- NESZ around -20 dBm in X, closer to -26 dBm in L Band.

advisory company

The "SAR Wars"

Surrey Space Systems Limited (SSTL)

- Close to Launch
- NovaSAR will consist of four state of the art SAR satellites able to operate day and night in all weather conditions.
- The first of these satellites is being funded by the UK
 government and is currently in development.
- Government investment announced in November 2011
- Mass less than 500kg

Iceye

- Aerial imaging with Jet aircraft 2017 Selected countries 4 week response 3m resolution
- Phase 1 3 satellite constellation 2018 Global access 24 hour response 10m resolution
- 1st Generation 6+ satellite constellation 2019 -Global
- access 6 hour response 3m resolution
- Mass of less than 100kg
- Raised around USD18M in funding
- Launch mid 2018

advisory company

MicroSAR Constellation

Scenario	1	2	3	4						
Constellation										
Number of planes	1	1	1	2						
Number of SAR satellites per plane	2	4	8	8						
Total number of satellites	1	4	8	16						
SAR coverage 24 hrs										
Number of SAR passes over CT	12	24	49	97						
% Area covered by SAR satellites	73.7	96.7	99.9	100						
Overlapping Scans across ROI (revisits)	1.2	2.4	4.8	9.6						
			1							

Conclusions

- SAR is a mature field and currently occupies 60% of Earth Observation applications research:
 - the diversity has been shown in this presentation.
- The number and diversity of applications is huge.
- To some extent, the population of earth is well served with research instruments but:
 - niche applications in surveillance required a large number of spaceborne instruments to achieve 24/7 coverage,
 - with frequent updates.
- Spaceborne SAR technology is very well understood: note that high sensitivity systems require large apertures / energy.

Designing a Radar Imaging Satellite: Pitfalls and Trade-offs