United Nations / Brazil Symposium on Basic Space Technology 2018

亚太-大学小卫星项目

APSCO SSS Project and Space Education for B&R Cooperations

Wang Xinsheng

Beihang University, China September 11-14, 2018 Natal, Brazil

APSCO Ground Station Network

Occoperation in the Future

Summary.

The Belt and Road (B&R) Countries and Status

APSCO Small Student Satellite (SSS) Project

- The largest basic activities of APSCO, It was kick-offed in December, 2016.
- Launching service will be provided by CNSA.
- Member States : Bangladesh, China, Mongolia, Iran, Pakistan, Peru, Thailand and Turkey.
- Beihang University was identified as the Leading University.

APSCO Small Student Satellite (SSS) Project

APSCO SSS Project aims to train students and faculties from Member States (MS) for satellite engineering through hands-on practical training until the flight model is made.

- Develop their own space education system;
- Build their own capability to develop small satellites;
- Build their own payload/subsystem integrated on the satellite(s);
- Build their own capability to operate satellites and/or process image/data.

Payloads and Technologies

- Remote Sesing/Optical Camera
- Radiation Monitor
- AIS/ADS-B Receiver
- GNSS Receiver
- Deployed Mechanism
- Inter-satellite Communication

(Ū)

SSS-1 Configuration

- Main/Sub-sat, Coilable Mast
- GaAs Solar Array +Li-ion Bat
- ARM Processor with CAN Bus
- Passive + Active (MTQ, RW)
- Passive(MLI) + Active(Heater)
- S-band TRX + UHF/VHF TRX

- Inter-Sat Transceiver
- Remote Sensing Camera
- ADS-B Receiver
- Radiation Dosimeter

SSS-2A Configuration

SSS-2B Configuration

APSCO R&D Team

Small core team

Schedule/Cost/Highly integrated system /Minimum management layers

- Multidisciplinary
- Overall system understanding
- Flexible
- Complete Life Cycle Understanding
- Aerospace engineering education

APSCO SSS Team Members

UN Regional Centre for Space Science and Technology Education in Asia and the Pacific (RCSSTEAP), established in the later of 2014.

4 Directions of the Center

- Remote Sensing & Communication
- Global Navigation Satellite System
- Small Satellite Technology
- Space laws

Doctoral Program : Space Technology Applciation (DOCSTA)

MASTA Program (Long-term Education)

Cultivate student capable on multidisciplinary and system engineering in aerospace engineering research field and application.

- More basic course learning, 2.5 years;
- Creative theoretical and experimental studies;
- Advanced methods related in spacecraft engineering;

MASTA Program Framework

	Pha	ase I	
	Course Stu	idy: 9 months	
	Module I	Module II	Module III
Individual Training Plan	Common Platform Courses	Major courses Academic Lectures Professional visits	Pilot Project

Thesis Re	search: 12 mo	Phase II onth (in China	or home co	untry)
Literature Survey and Thesis Proposal	Midterm Assessment	Academic Activities	Thesis Research	Thesis Defense

MASTA Program :Team Pilot Project

- Training the students to put the knowledge and skills into practice.
- Encouraged to be carried out in Team to provide a chance to complete a task with teammates for developing the teamwork spirits.
- Conduct experiments to verify their ideas with the facilities of BUAA-Sat project.

Recruited Foreign Students in MASTA Program

The most special feature is **Practice ! (21 months)**

-Based on the platform of SSS-1;

-Make use of the materials of design/analysis/test for SSS-1 Sat;

-Conduct experiments to verify their ideas SSS-1 project with the facilities of SSS-1 project.

Short-Term Training: the Summer Camp

the Summer Camp Framework

M1- Course Small-satellite Interdisciplinary Lectures	M4-WORKSHOP	
M2-TP Team Project	Satellite Technical Workshop	M5-HP Project Hand-on Practice
M3-IP Individual Project	workshop	

Space Education and Training

Spin-off Startups

Spin-off Startups

- Integrated solutions to NanoSat:
- 1. Satellite task analysis and design;
- 2. Task demand analysis;
- 3. Hardware manufacturing;
- 4. Software development;
- 5. Key payload development;
- 6. Satellite integration and testing;
- 7. Launch and its separation mechanism;
- 8. Ground station services;
- 9. Training and operation support.

Problems

- M.S. universities have established UV or S-band ground station independently.
- Satellite TT&C coverage and communication time is <u>limited</u>.
- Existing G.S. facilities do not have the operation and application service efficiency

Ground Station Network

G.S Network Architechture

APSCO MCC& DPAC Location

Located in Beihang Campus (Beijing, N40.153°, E116.268°)

APSCO MCC& DPAC Function

- Scheduling G.S. resource allocation, management plan;
- Receiving satellite telemetry data and payload data;
- □ To generate the satellite telecommand;
- Orbit control for spacecraft ;
- Satellite data display;
- Provide international space technology engineering practice education and training.
- □ Provide teleconference center for M.S.

BUAA UHF/VHF Ground Station

1) VHF yagi antenna 端口设置 Frequency : 143~146MHz 0.00 Number of the oscillator : 2×11 ⊙ ccw Gain : 17.25 dBic Front to back ratio: 25 Beam width : 38.5° VSWR : 1.5:1 2) UHF yagi antenna Frequency: 432~438 MHz オアズ 计前时间 Number of the oscillator : 2×21 入境时间 出境时间 Gain : 18.85 dBic H St B Beam width : 21.5° 3) Radio technical specifications 土林的 fv3 **大打**的 TERRA The support of the band : UHF/VHF Modulation / demodulation method : FM/SS VHFMaximum RF power : >=100W UHFMaximum RF power : >=50W Bit rates: 1200bps、2400bps、4800bps、9600bps (optioned) Communication protocol : AX.25

BUAA S-band Ground Station

- Antenna D= 4.2m;
- G/T > 14.5dBK(elevation=5°, 2.3GHz);
- Antenna Gain >= 37.5dBi @2.3GHz
- Transmit Power 40W,
- Antenna Track Accuracy < 0.05°;</p>
- Work Mode : , satellite data receive, telecommand uplink;
- Full duplex work, polarization: LHCP,RHCP switched by software.
- Data rate: 10kbps~10Mbps (SDR)
 - Remote operation, autonomous operations

四朝北に渡り	18				- X	UKE お				
នា	前卫星	SPO	Т5		21 21 21	114-8-14 9:12:19 連感工 114-8-14 9:12:21 軌道預 114-8-14 9:12:29 道感工	,置接收控制系统 服开始,请等待 ,置接收控制系统	巴启动1 		
ទ័រ	前时间	14-0	08-14	09:1	2:35	14-8-14 9:12:29 AUER	张光成,			
~~	晚时间	14-0	08-14	10:1	9:16					
nit d	ide and fill	14-0	08-14	10:2	7:47	经基状态				
1	计时	01:0	6:41			<mark>) I</mark> 方	12] 模式 📃	S 🗌	限位状态
28.2	质仰角	18,6	9	皮		<mark>)</mark> Y #	19] 电压 📃	X 🔜	
2.2.1112	18									
2 里秋 港信 是否接4	を な 接衣状态	卫星名称	卫星代号	优光级	入境时间	出現时间	过项仰角(度)	入境方位角(度)	入境均角(度)	出視方位角(
卫星批课 的 是否接4 是	地 友 接 衣 状 衣 衣 大 技 衣 代 志 	卫星名称 SPOT5	卫星代号 27421	代光版 2	入境时间 14/08/14 10:19:16	出境时间 14/08/14 10:27:47	过顶仰角(度) 18.69	入境方位角(度) 45.61	入境仰角(度) 8.23	出視方位角(141.95
2重批連結 是否接(是 是	18. 位 接衣状态 未接衣 未接衣	卫星名称 SPOT5 HJLA	卫星代号 27421 33320	优光级 2 5	入境时间 14/08/14 10:19:16 14/08/14 11:18:38	出坡时间 14/08/14 10:27:47 14/08/14 11:26:44	过顶仰角(度) 18.69 79.39	入境方位角(度) 45.61 8.83	入境均角(度) 8.23 15.7	出境方位角(141.95 197.09
2 里秋 連信 是否接(是 是		卫星名称 SPOT5 HJ1A SPOT5	卫星代号 27421 33320 27421	优先级 2 5 2	入境时间 14/08/14 10:19:16 14/08/14 11:18:38 14/08/14 11:59:49	出境时间 14/08/14 10:27:47 14/08/14 11:26:44 14/08/14 12:09:25	过项向角(度) 18.69 79.39 47.65	入境方位角(度) 45.61 8.83 356.56	入境你角(度) 8.23 15.7 16.07	出視方位角(141.95 197.09 214.32
2 里秋道 日 是否接付 是 是 是 是	10 文 接衣状态 未接衣 未接衣 未接衣 未接衣 未接衣	卫星名称 SPOT5 HJ1A SPOT5 AQUA	卫星代号 27421 33320 27421 27424	优先级 2 5 2 1	入境时间 14/08/14 10:19:16 14/08/14 11:18:38 14/08/14 11:59:49 14/08/14 12:43:08	出境时间 14/08/14 10:27:47 14/08/14 11:26:44 14/08/14 12:09:25 14/08/14 12:46:09	过项仰角(度) 18.69 79.39 47.65 9.19	入域方位角(度) 45.61 8.83 356.56 78.89	入境俗角(度) 823 15.7 16.07 8.06	出現方位角() 141.95 197.09 214.32 44.29
2重批運信 是否接(是 是 是 是 是	B	卫星名称 SPOT5 HJIA SPOT5 AQUA ouro	卫星代号 27421 33320 27421 27424 28376	优光级 2 5 2 1 1	入境时间 14/08/14 10:19:16 14/08/14 11:18:38 14/08/14 11:59:49 14/08/14 12:43:08 14/08/14 14:07:10	出現时间 14/08/14 10:27:47 14/08/14 11:26:44 14/08/14 12:09:25 14/08/14 12:46:09 14/08/14 12:17:18	过项向角(度) 18.69 79.39 47.65 9.19 64.79	入境方位角(度) 45.61 8.83 356.56 78.89 156.21	入境仰角(度) 8.23 15.7 16.07 8.06 8.39	出视方位角() 141.95 197.09 214.32 44.29 353.38
2 mm.ma 是否接(是 是 是 是 是	2	卫星名称 SPOT5 HJIA SPOT5 AQUA ouro AQUA	卫星代号 27421 33320 27421 27424 28376 27424	优光级 2 5 2 1 1 1	入境时间 14/08/14 10:19:16 14/08/14 11:18:38 14/08/14 11:59:49 14/08/14 12:43:08 14/08/14 14:07:10 14/08/14 14:07:10	出現时间 14/08/14 10:27:47 14/08/14 11:26:44 14/08/14 12:09:25 14/08/14 12:46:09 14/08/14 14:17:18 14/08/14 14:26:45	过现仰角(度) 18.69 79.39 47.65 9.19 64.79 84.54	入境方位角(度) 45.61 8.83 356.56 78.89 156.21 168.1	入境均角(度) 8.23 15.7 16.07 8.06 8.39 8.24	出境方位角(141.95 197.09 214.32 44.29 353.38 346.42
2. # 11 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 #	2	卫星名称 SPOT5 HJIA SPOT5 AQUA ouro AQUA ouro	卫星代号 27421 33320 27421 27424 28376 27424 28376	优先级 2 5 2 1 1 1 1	入境时间 14/08/14 10:19:16 14/08/14 11:18:38 14/08/14 11:59:49 14/08/14 12:43:08 14/08/14 14:45:49 14/08/14 14:16:29 14/08/14 15:48:03	出境时间 14/08/14 10:27:47 14/08/14 10:27:47 14/08/14 11:26:44 14/08/14 12:09:25 14/08/14 12:46:45 14/08/14 14:15:12 14/08/14 15:52:39	过顶彻角(度) 1869 7939 4765 919 6479 8454 10.79	入境方位角(度) 45.61 8.83 356.56 78.89 156.21 168.1 242.52	入境俗角(度) 823 15.7 1607 806 839 824 813	出境方位角(141.95 197.09 214.32 44.29 353.38 346.42 296.29

Cooperation in the Future

UN Regional Centre Alliance

Summary

- SSS project is the largest basic activity in APSCO and on-going basic space technology activity for B&R countries.
- APSCO G.S. Network improved capacity-building and resources sharing in basic space technology for B&R countries, More G.S nodes are welcomed to join in the worldwide.
- Strengthen the space technology academic exchanges and the international education cooperation among UN Regional Centre Alliance .

THANK YOU!

Welcome to website: www.apsco-sss.com

Email: xswang@buaa.edu.cn