Realization of Terrestrial Reference Frame for GNSS

Zhang, Hongping on behalf of

Jingnan Liu, Chuang Shi, Rong Zou, Na Wei

GNSS Research Center

Wuhan University, Hubei, China

ICG WG-D, Oct. 2010

jnliu@whu.edu.cn

OUTLINE

Back Ground

TRF Realization by Multi-techniques combination

- A-optimal regularization
- Intra-technique combination
- Inter-technique combination
- Compass Reference Frame simulation
- Geocenter motion from GPS

BackGround

- TRF is a basic for GNSS, each system has to develop its TRF
- TRF is complicate in definition and realization
- TRF needs data and software support from global or regional area
- TRF Realization is an important step for GNSS
- TRF has to meet all kinds of application in deferent levels of precision

BackGround

□ ITRF 2005

What's TRF

TRF

Reference Frame: Points with accurate xyz

Inputs:

Points with X Y Z, freedom (observed by GPS,VLBI,SLR) aprior information as EOP, some sites' coordinates

Outputs: Points with XYZ and velocity field Transformation Parameters, EOP Purpose: determine how these points are consistent with each other, so that they are in a family Problem in Realization of TRF? points with freedom, Rank deficiency

Datum Estimation

Fig. 1 Condition number of 78 GPS SINEX files

Regularization parameter

Fig. 3 Statistica Communitationes warbations rivertionego wartike ation parameters 7

Results & Analysis

Coordinate differences between two individual datum constrains are within 3cm, and 98% of them less than 2cm

Combination Strategy

Intra-Sectionation

TRF Simulation Test

- Coordinate System Definition
 - ITRS definition
 - □ IERS 2003
- NetWork
 - Global distributed permanent stations
- Simulation data

AC	SINEX files	Data-span					
AIUB	28 Weeks	2007-2008					
ESA	28 Weeks	2007-2008					
GFZ	28 Weeks	2007-2008					
Software	PowerADJ-→PANDA						
Remarks: GPS weeks from 1399 to 1402, 1419 to 1422, 1431 to 1434, 1443 to 1446, 1460 to 1463, 1471to 1474, 1483 to 1486							

Results

¹³ Fig. 5 Transformation parameters of each AC wrt intra-technique combination(WHU)

Analysis

Fig. 6 Transformation parameters of WHU wrt ITRF2005

Why Geocenter Motion?

 \Box No perfect geophysical models available to constrain $\Delta T = 0$

- \Box ΔT : long-term, seasonal, residuals
- $\vec{T} = 0$ is long-term constraint, and in this case geocenter motion mainly shows seasonal variations

Degree-one deformation approach

- Data and preprocessing
 - IGS reprocessed weekly SINEX : 2000.0~2010.0
 - Network: 132 reference frame stations of IGS05
 - Linear velocity and jumps : IGS05_repro.snx

Results

Fig. 7 Geocenter motion time series from scheme 2

Annual terms analysis

	X		уу			Z		
	Amplitude,mm	Phase,deg	Amplitude,mm	Phase,deg		Amplitude,mm	Phase,deg	
scheme 1	3.68 ± 0.2	259 ± 3	2.96 ± 0.1	330 ± 2		8.49 ± 0.2	229 ± 1	
scheme 2	3.72 ± 0.2	261 ± 4	3.06 ± 0.1	331 ± 2		8.95 ± 0.2	228 ± 1	
scheme 3	3.56 ± 0.2	261 ± 4	3.18 ± 0.1	334 ± 2		8.52 ± 0.2	228 ± 1	
scheme 4	3.58 ± 0.2	262 ± 4	3.12 ± 0.1	336 ± 2		8.96 ± 0.2	228 ± 1	
scheme 2 ^b	3.92 ± 0.3	256 ± 4	2.45 ± 0.2	327 ± 2		9.86 ± 0.2	230 ± 1	
ig1	1.93 ± 0.2	89 ± 6	2.49 ± 0.1	144 ± 3		1.98 ± 0.3	294 ± 8	
Lavallee,2006 ^c	3.57 ± 0.3	219 ± 5	2.44 ± 0.3	289 ± 7		9.93 ± 0.3	240 ± 1	
Dong,2003 ^d	2.1 ± 0.3	224 ± 7	3.3 ± 0.3	297 ± 6		7.1 ± 0.3	232 ± 3	
SLR ^e	2.60	229	3.00	320		3.55	231	

^a Ar

A
Ta
d
A

Comparison with SLP Amplitude in X and Y direction agree with Lavallee, but the phase is different up to 40 degletee and shase of scheme 2 are larger in X direction, both amplitude lend whase in Mighten to 2 and phase in Z direction show good consistency with Scheme 2 in X and Y direction, encoverging lenges and phase in X direction show good consistency with in earlier stage may be smaller

D3

Discussions

- TRF Realization with GNSS, data processing technique development for Multi-GNSS era, need steps forward
- TRF alignment to international standard, need push through more application projects for GNSS performance refining, IGS as an successful experience, we need make it forward.
- We realized the estimation of geocenter motion, annual amplitude and phase of by degree-one approach is consistent with those published
- Geocenter motion is the basic problem for TRF realization for high precision applications
- Multi-space technology is important to realize TRF for GNSS

THANK YOU !!!