

PNT Improvements supported by BeiDou

Yuanxi Yang

China National Administration of GNSS and Applications (CNAGA)

1. Background

Questions

- > What is the limit of navigation satellites?
- How many satellite constellations do we need?
- > How many frequencies are suitable?

Answer

- Satellites---at least 4----any where, any time, any cut angle.
- Constellations---at least 3----for voting----spoofing identification.

Frequencies----at least 2,----for error mitigation?

Redundancy is needed!

1. Background

Multi constellation and multi frequency are helpful

- to improve DOP values (Increasing the number of satellites always reduces GDOP—Yarlagadda et al 2000).
- to weaken the influence of multi-path and interference (different spectrums).
- to weaken the effects of ionosphere and troposphere (multi frequency),
- to weaken the restriction of distance from the reference stations.
- > to fix ambiguity and shorten initial positioning time.

2. Contribution of BeiDou to PNT users

b to identify outliers, to make the state estimates robust and reliable

- > to compensate colored and systematic errors
- > to improve time scale estimates and accuracy
- > to resist random error effects
- b to improve availability and integrity (satellite visibility)
- to improve reliability of coordinate reference systems (different satellite products and wide distributed tracking stations).

3. Simulation Analysis for Visibility and DOP Values

- > A simulated example is given by using STK software.
- > The J2 perturbation was considered in the satellite position computation.
- The time period covered 24 hours, i.e. 12 o'clock, July 1 to 12 o'clock, July 2, 2009. The sampling interval was 300s.
- > The circle orbits for Galileo and BeiDou were employed.
- > 9 satellites were even distributed in 3 orbit surfaces for Galileo.
- The 27 MEO satellites for BeiDou were also distributed in 3 orbits.
- For GPS and GLONASS satellites, the orbit parameters were obtained by using their broadcast ephemeris. In the period 31 GPS and 21 GLONASS satellites were involved.

3.1 Simulation explanation

Basic orbit parameters for Galileo:

- Major axis a=29993.707km;
- Inclination angle i=56°;
- > Orbit flattening e=0;
- > Argument of perigee $\omega = 0^{\circ}$;
- Right ascension of ascending node Ω =60°, 180°, 300° (3 orbit);
- Mean anomaly M0=0° (Start time of the 1st sat. in each orbit M0=0°, others plus 40° each).

Basic orbit parameters for BeiDou MEO:

- Major axis a=27878.1km;
- Inclination angle i=55°;
- > Orbit flattening e=0;
- > Argument of perigee $\omega = 0^{\circ}$;
- Right ascension of ascending node Ω=0°, 120°, 240° for 3 orbits;
- Mean anomaly M0=0°, 15°, 30° (Start time of the 1st sat. in each orbit. Others plus 45° each. The reserve sat. with mean anomaly of 10°, 55°, 105°)

3.1 Simulation explanation

Computation schemes for Visibility and DOP

- Scheme 1: Single GPS constellation
- Scheme 2: GPS+BeiDou
- Scheme 3: GPS+GLONASS
- Scheme 4: GPS+GLONASS+ BeiDou
- Scheme 5: GPS+ GLONASS+GALILEO
- Scheme 6: GPS +GLONASS+GALILEO+BeiDou

GDOP Changes

 $\Delta \mathbf{D} = \mathbf{DOP}_{o} - \mathbf{DOP}_{n} = tr\{\mathbf{N}_{o}^{-1}\mathbf{A}_{n}^{T}(\mathbf{A}_{n}\mathbf{N}_{o}^{-1}\mathbf{A}_{n}^{T} + \mathbf{P}^{-1})^{-1}\mathbf{A}_{n}\mathbf{N}_{o}^{-1}\}$

3.2 Satellite Visibility Analysis

Visibility (Global)

GPS Visibility

GPS+BeiDou Visibility

GPS+GLONASS Visibility

GPS+GLONASS+BeiDou Visibility

3.2 Satellite Visibility Analysis

Visibility (Global)

GPS+GLONASS+Galileo Visibility

GPS+GLONASS+Galileo+BeiDou Visibility

3.2 Satellite Visibility Analysis

Average visibility in different cut angles

	10° (9	95%>)	20° (90%>)	30° (90%>)	40° (9)0%>)
Schemes	min	mean	min	mean	min	mean	min	mean
1	6	7.2	4	5.3	3	3.6	1	2.1
2	12	17.8	10	13.2	7	9.4	3	5.9
3	10	12.1	8	9.2	4	6.4	2	3.8
4	18	22.5	13	17.1	8	12.2	5	7.9
5	16	19.8	14	15.3	8	10.8	5	6.8
6	25	30.8	20	23.4	12	16.6	7	10.1

3.3 DOP Value Comparison

GDOP Improvement (Global)

GDOP of GPS (G)

GDOP of $GPS(G)+GLONASS(G_R)$

GDOP of GPS(G)+BeiDou(B)

GDOP of G+G_R+B

3.3 DOP Value Comparison

GDOP Improvement (Global)

GOOP 0.90 1.00 1.10 1.20 1.30 1.40 +

GDOP of G+G_R+Galileo(G_E)

GDOP of G+G_R+G_E+B

DOP Improvement percentage by BeiDou with cut angle of 10° (Do not consider any time systematic parameter)

Scheme	GDOP	PDOP	HDOP	VDOP
G	50.1%	49.5%	46.3%	50.1%
G+G _R	32.7%	32.3%	31.0%	32.8%
G+G _E	29.5%	29.0%	28.1%	29.5%
$G+G_R+G_E$	22.6%	22.2%	22.5%	22.5%

DOP Improvement percentage by BeiDou with cut angle of 10^o (Considering the time systematic parameter of BeiDou)

Scheme	GDOP	PDOP	HDOP	VDOP
G	46.1%	48.5%	45.3%	49.1%
G+G _R	27.5%	31.1%	29.9%	31.6%
G+G _E	23.8%	27.7%	27.3%	28.0%
$G+G_R+G_E$	16.2%	21.0%	21.7%	21.2%

4. Analysis

- The average visibility of satellites (AVS) increased from about 7 with GPS constellation to 17 with cutting angle of 10 deg;
- AVS increases from 12 with GPS+GLONASS to 22 with BeiDou added (85%);
- AVS increases from 21 with GPS+GLONASS+ GALILEO to 31 with BeiDou added in whole word.

It will improve the continuity, availability and integrity as well as the robustness of PNT.

4. Analysis

The DOP value is decreased nearly 49% with GPS+BeiDou based on GPS only;

The DOP is decreased about 32% and 28% by BeiDou based on GPS+GLONASS and GPS+Galileo respectively;

The DOP value of GPS+GLONASS+Galileo is still improved 22.6% by BeiDou.

The decreases of DOP values will improve the precision of PNT.

5. Future works and conclusions

- For the masking area, multiple constellations will not only improve the visibility of satellites, but also improve the geometry strength.
- When the cut angle is 40 deg, a single constellation can only provide 2 satellites or less, but the two constellations will averagely provide more than 4 satellites and four constellations will provide 10 satellites. In this case there will not be any blind area for the users in the world.
- Thus the interoperability of multiple satellite navigation systems will significantly reduce the blind area and improve the availability of PNT.

5. Conclusions and future works

- **BeiDou improves the visibility of satellites greatly.**
- BeiDou will also improve the users' PNT geometry distribution.
- The integrity and continuity of PNT will be improved by multiple satellite constellations.
- The accuracy and reliability of PNT will be improved by integrating the multiple satellite systems.
- If the compatibility parameters are considered, the changes of DOP values should be changed. Thus the compatibility is very important.

Thanks for your attention!