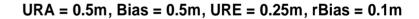
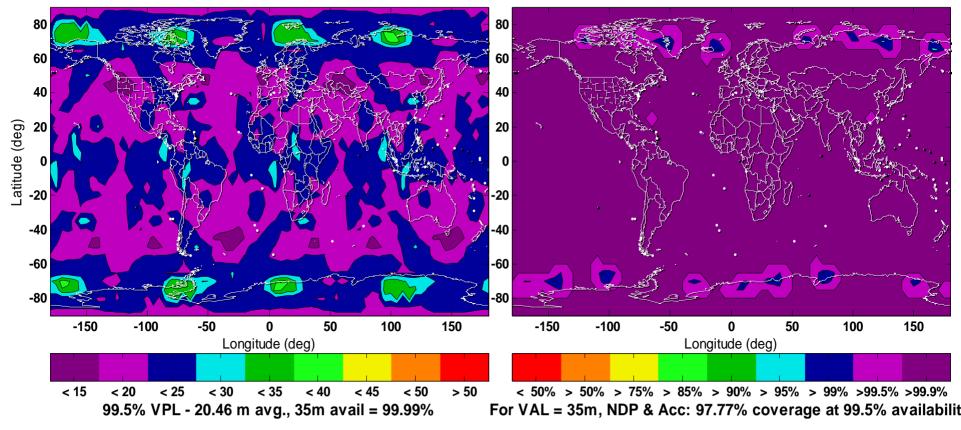
Enabling Multi-Constellation Advanced Receiver Autonomous Integrity Monitoring (ARAIM)

International Committee on GNSS (ICG-5)

Leo Eldredge GNSS Program Manager FAA Navigation Services

Federal Aviation Administration


ARAIM Overview

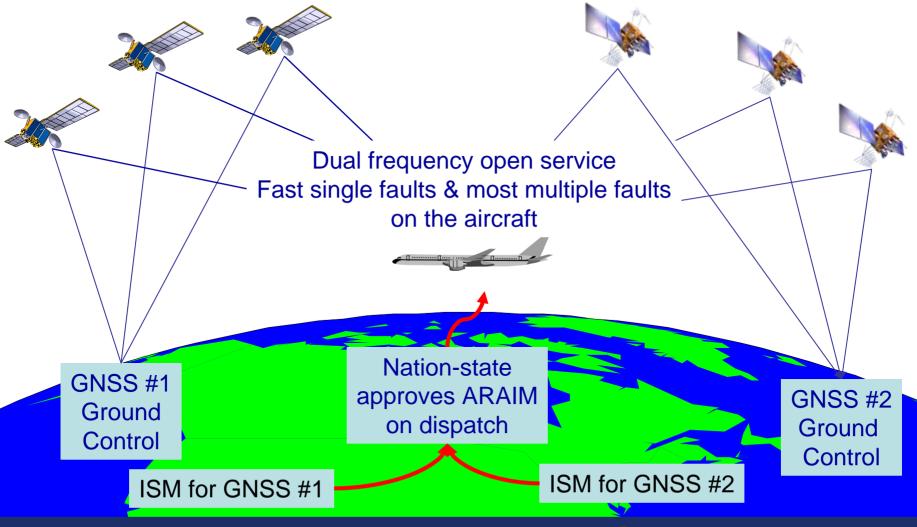

- GNSS Evolutionary Architecture Study (GEAS) Phase II
 Report Recommendations
 - Development of dual frequency SBAS
 - Development of architectures and algorithms for Advanced Receiver Autonomous Integrity Monitoring (ARAIM), based on
 - Dual frequency ARNS (L1 and L5) signals
 - At least two independent GNSS core constellations for civil aviation.
- GEAS determined ARAIM could enable worldwide LPV-200 performance, provided:
 - Measurement redundancy and geometric diversity was assured
 - Results based on assumed knowledge of specific "parameters" for the core GNSS constellations

ARAIM Results for 30 SVs & URA = .5 m

URA = 0.5m, Bias = 0.5m

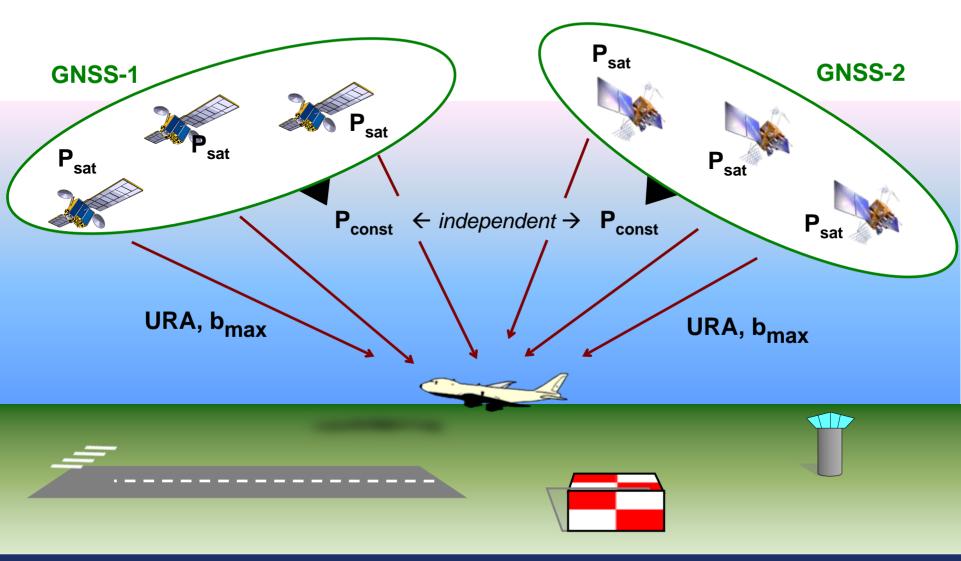
ARAIM currently predicated upon a user update rate of ~ 1hour

Performance Parameters for ARAIM


- ARAIM depends on GNSS specific constellation performance parameters:
 - ① Bounding of fault-free clock and ephemeris error distributions
 - ② Prior probability of SV faults
 - ③ Independence of faults between core constellations.

• ARAIM users receive an integrity support message (ISM)

- GNSS service provider provides ISM to aviation users directly
- ARAIM ISM generated by civil aviation authority with independent monitoring capability and broadcast to users



Integrity Support Message (ISM)

ARAIM Parameters

ICG-5 Providers Forum October 2010

Example: Worldwide coverage results

Less less accuracy (URA) constellation reliability P_{sat}/URA .5 m 1.5m 2 m 3.5 m 4 m 1 m 3 m Less 10-5 100% 100% 100% 100% 100% 42.9% 3.4% P_{const} < 10⁻⁸ satellite 10-4 100% 100% 100% 100% 100% $\mathbf{0}$ 0 reliability 10-3 100% 100% 100% 99.6% 6.6% 0 0 **10**⁻⁵ 95.0% 100% 100% 51.5% $\mathbf{0}$ 0 0 $P_{const} = 10^{-6}$ 0 100% 95.0% 51.5% 0 0 100% 10-4 10-3 95.0% 51.3% 0 0 100% 100% 0 10-5 98.5% 79.2% 1% 0 0 100% 0 $P_{const} = 10^{-4}$ 0 0 98.5% 79.2% 0 10-4 100% .1% **10**-3 100% 98.5% 79.2% .1% 0 0 0

GPS 27 + Galileo 27

 P_{sat} = Prob. of satellite fault P_{const} = Prob.of constellation fault

 $b_{max} = 0.75 m$

Parameters Needed From GNSS Provider

• User Range Accuracy \rightarrow 'URA'

- Standard deviation of the overbounding Normal distribution for clock and ephemeris errors
- Bias parameter \rightarrow 'b_{max}'
 - May be needed to bound potential non-zero mean error distributions
- Fault state probability (fault-rate × time-to-notify) \rightarrow 'P_{sat}'
 - Needed for faults that <u>are</u> independent between satellites
- Probability of constellation-wide fault \rightarrow 'P_{const}'
 - For multiple faults that are <u>not</u> independent between satellites
 - Example is Earth Orientation Parameter (EOP) fault undetected by GNSS ground system

Summary

- Four basic parameters are needed to enable ARAIM integrity:
 - URA and b_{max} to describe nominal performance of clock and ephemeris
 - Prior probability of satellite fault
 - Prior probability of constellation failure
- A common understanding of these parameters must be developed and agreed upon by the service providers for interoperability
- ISM is a mechanism to deliver these parameters to users
- Delivery of ISM could be from multiple sources
- GNSS service providers need to include these parameters in Performance Standards

