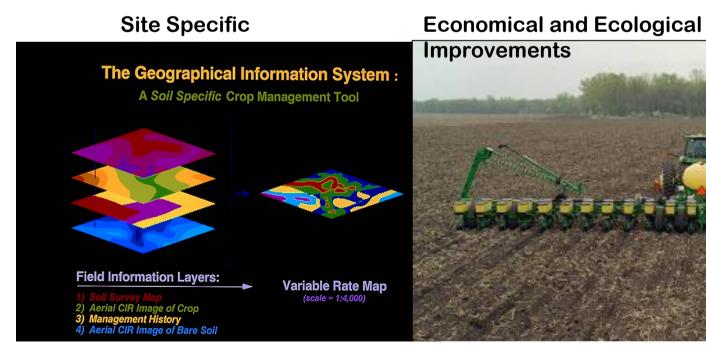
Sixth Meeting of the International Committee on Global Navigation Satellite Systems (ICG)

EXPERIMENTAL RESULTS OF LEX CORRECTIONS USING FARMING MACHINE

Technology and Business Innovator

Masayuki Kanzaki Hitachi Zosen Corporation

> Prof. Noboru Noguchi Hokkaido University

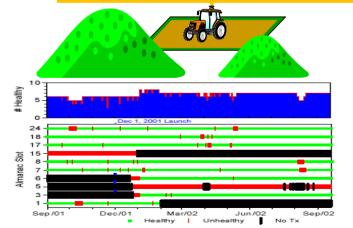

IT Automated Driving Working Group Satellite Positioning Research and Application Center

Contents

- Background
 - Precision Agriculture
 - Mission of IT Automated Driving Working Group
- Overview of Experiment
 - Centimeter Level Augmentation System
 - Low Speed Mobile Units
 - Installation in Farming Machine
 - Experimental Field and Sessions
- Results
 - Comparison of Accuracy in Static Mode
 - Comparison of Accuracy and Response in Driving Mode
- Conclusion

Precision Agriculture

- Precision Agriculture addresses -
 - Production of high-quality foods and feeds at a site-specific (individual) optimized use of resources for production
 - Economical and ecological improvements in agricultural production
- Precise Positioning with Satellites are effective



Current issues of GNSS as field navigation sensors

- Cannot be used in any time and any places
- Low Reliability due to limited number of satellites
- Acquisition of Correction data for RTK has problems (Cost and coverage of Cell phone – Packet service area)

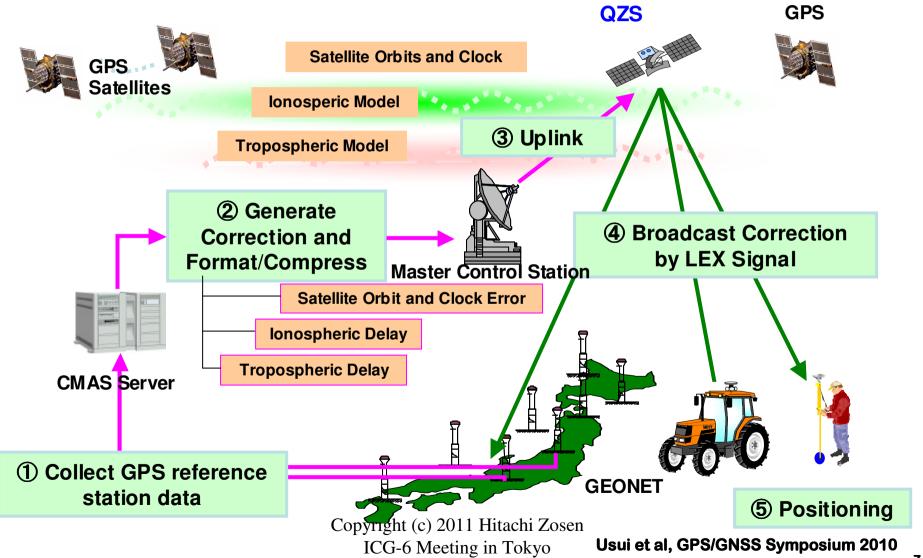
Michibiki - QZSS solves those issues

Mission of IT Automated Driving WG

- Prove QZSS-LEX corrections effect for Autonomous Vehicle Control
 - Evaluate LEX Corrections for Vehicle Control Applications such as Farming and Construction Machines (Slow Dynamic Vehicles)

Evaluation of using QZSS-LEX for ve precise control

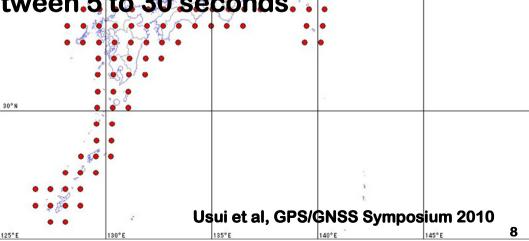
- Geo Spatial Data Maintenance (Field Maintenance)
- Un-manned Operation
- Realize Precision Agriculture using QZSS LEX correction


Centimeter Level Augmentation System (CMAS)

- Satellite based high accuracy correction and augmentation system by using QZSS LEX signal to improve Positioning using GPS
 - Broadcast Correction data through QZSS LEX Signal
 - Realize centimeter positioning in real time whole Japan
 - Use L-Band antenna to receive the correction (Can be share with GPS)
 - Static and Dynamic (Kinematic) Survey support in real time
 - Generate corrections using GSI-GEONET GPS network data
 - Base station does not need for Precise Positioning
- Space State Representation

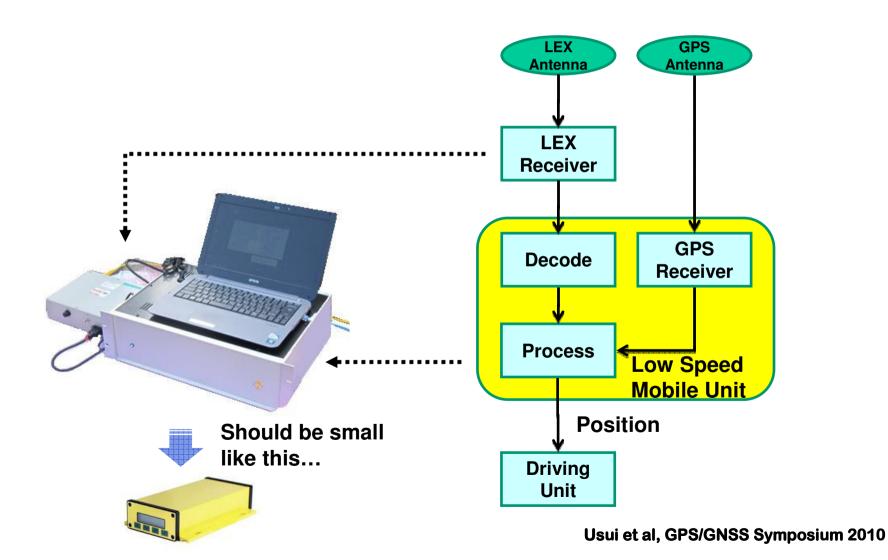
6

- Positioning Method and target accuracy
 - Method
 PPP-RTK (Precise Point Positioning) SSR
 - Accuracy in Static
 3cm in Horizontal, 6cm in Vertical
 - Accuracy in DynamicCopyrig6cm2in1Horizontal, 12cm in Vertical
 - **TTFF(Time To First Fix)** ICG Within 60 Seconds Usui et al, GPS/GNSS Symposium 2010


Overview of CMAS

Estimate and Broadcast Corrections

Estimate Errors and Generate Correction by using GPS Network


- Satellite Orbit and Clock Error
- Ionospheric Error
- Tropospheric Error
- For each GPS satellites (No corrections for QZSS now)
- Correction data packed into 1695bps LEX packet
- Location depended errors are transformed to grid :
- Update each corrections between.5 to 30 seconds.

Slow Dynamic Mobile Unit

- Dual Frequency GPS Carrier Phase Measurement
- Correction data received by LEX Receiver
- Calculate exact correction data based on rough position of unit
- Perform PPP-RTK
- Mode
 - Synchronous mode : High Accuracy with 7 seconds latency
 - Asynchronous mode : Low Accuracy in Real time
- Coordinates are using ITRF system
 - No co-seismic deformation effect
 - Dynamic coordinate transformation needed ITRF to Japanese Geodetic Datum (JGD2000)

Slow Dynamic Mobile Unit

Experimental Field National Institute for Rural Engineering

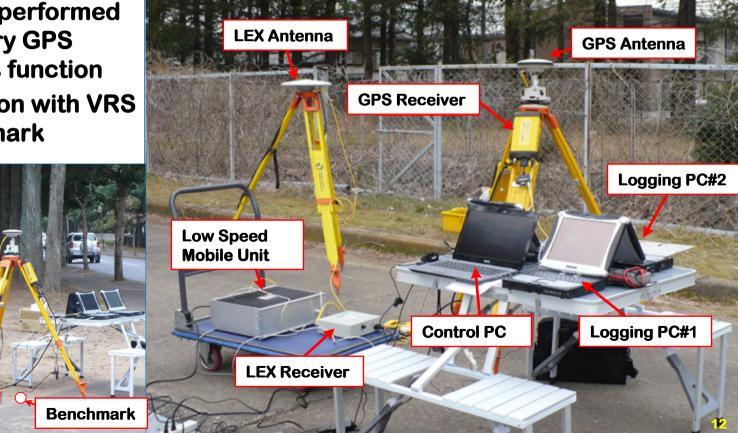
Benchmarks

 Post processed GPS Surveying performed by Professional Surveyor

親音台

検証点10

- Three benchmarks used for Static test (Different environments)
- Two benchmarks used for Dynamic test (Straightaway)


C

Composition of Static Positioning

Equipment Composition for Static Positioning Experiment

- Share GPS antenna to VRS-RTK and QZSS-LEX positioning
- VRS data received by Smart-phone (Packet communication)
- VRS-RTK performed by ordinary GPS receiver's function
- Comparison with VRS at benchmark

TriPod

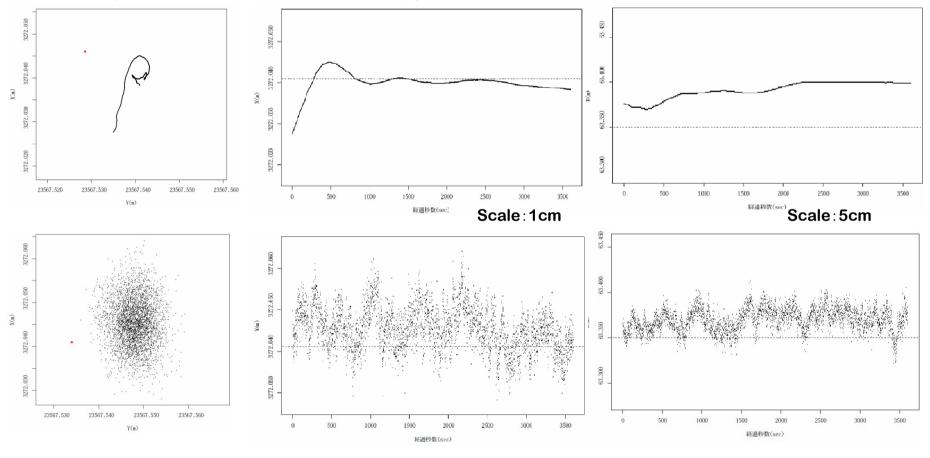
Composition of Dynamic Positioning

- Equipment Composition for Dynamic Positioning Exp
 - Installed on Tractor
 - Prism (Automatic Laser Tracking) mounted under GPS antenna for Precise comparison
 - Automatic Tracking Total Station used for comparison

Results of Static Positioning

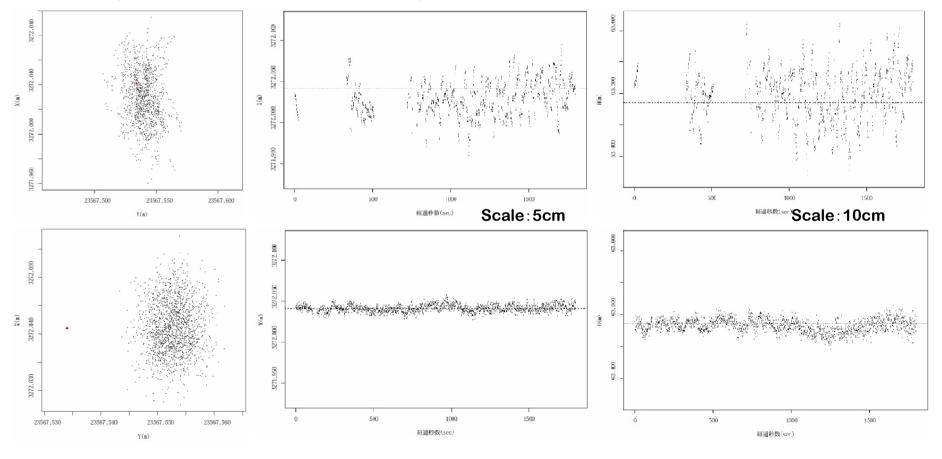
Static Positioning (Open Sky)				
Benchmark	#10			
Date and Time	2011/02/08 (TUE) 10:00 - 11:00			
Positioning Mode	Synchronous			
Update Interval	1Hz			

	Fix %	# of Results	# of FIX	Invalid	Float	MissFIX	Missing
LEX (LSMU)	99.97%	3,600	3,599	0	1	0	0
VRS-RTK	100.00%	3,600	3,600	0	0	0	0


		X(m)	Y(m)	H(m)
LEX (LSMU)	Standard Deviation	0.002	0.002	0.009
	RMS Error	0.003	0.007	0.042
	Max Error (ObsTrue)	-0.013	0.009	0.050
VRS-RTK	Standard Deviation	0.005	0.003	0.012
	RMS Error	0.007	0.014	0.024
	Max Error (ObsTrue)	0.023	0.025	0.063

Copyright (c) 2011 Hitachi Zosen

ICG-6 Meeting in Tokyo


Examples of Static Positioning (Synchronous Mode)

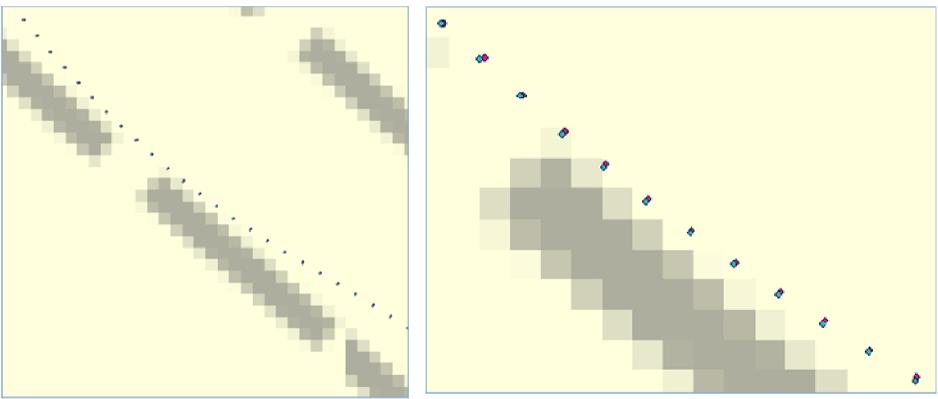
Comparison between Low Speed Mobile Unit and VRS-RTK

Examples of Static Positioning (Asynchronous Mode)

Comparison between Low Speed Mobile Unit and VRS-RTK

Results of Dynamic Positioning

Dynamic Positioning (Good case)				
Benchmark	#10 - #11 Straight Driving			
Date and Time	2011/02/09 (WED) 10:00 - 14:00			
Positioning Mode	Synchronous			
Update Interval	5Hz			


	Fix %	# of Results	# of FIX		
LEX (LSMU)	100.00%	1,666	1,666		
VRS-RTK	100.00%	1,664	1,664		
			X(m)	Y(m)	H(m)
LEX (LSMU)	Standard Deviation		0.005	0.005	0.007
	RMS Error	RMS Error		0.005	0.029
	Max Error (ObsTrue)		-0.041	0.038	-0.052
VRS-RTK	Standard I	Standard Deviation		0.005	0.012
	RMS Error		0.007	0.006	0.016
	Max Error (ObsTrue)		-0.049	0.043	0.043

Copyright (c) 2011 Hitachi Zosen

ICG-6 Meeting in Tokyo

Examples of Dynamic Positioning

 Zoom up Trajectory (Red: LSMU, Blue:VRS-RTK) In case of Meander Driving (Intervals are around 30cm) Zoom
 More Zoom

Conclusion

Effects to use MICHIBIKI-QZSS

- Provide navigation signals and correction data from zenith
- Improve satellite visibility for precise positioning in canyon
- Expand availability to perform precise positioning whole Japan
- Broadcast QZSS LEX correction at Asia-Oceania regions are feasible
 - Require CORS stations at each region to generate corrections

QZSS LEX correction were performed well with farming machine

- Positioning accuracy of Low Speed Mobile Unit (PPP-RTK with LEX) is similar with VRS-RTK in case of open sky environment
- Some cases caused un-Fixed positioning due to loss of signals
- Precision Agriculture using QZSS LEX will greatly useful to reduce the environmental damageoanighte)increaseitheproductive ICG-6 Meeting in Tokyo

ZSS is not a just supplemental Navigation Satellite

Unique concepts with - Always on your zenith - Broadcast HP corrections

Thank you for your attention

This experiment has been conducted by the consignment from the Ministry of Education, Culture, Sports, Science and