Multi-GNSS within the IAG/IGS

Chris Rizos

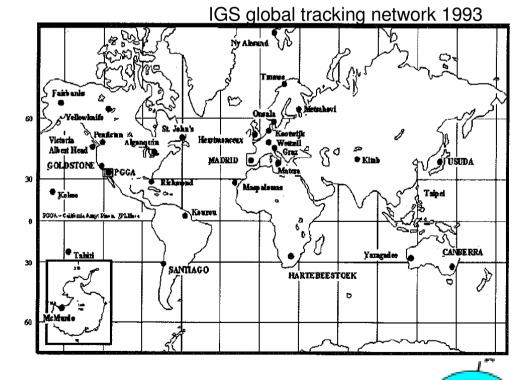
School of Surveying & Spatial Information Systems University of New South Wales, Sydney, Australia

International Association of Geodesy (IAG) International GNSS Service (IGS)

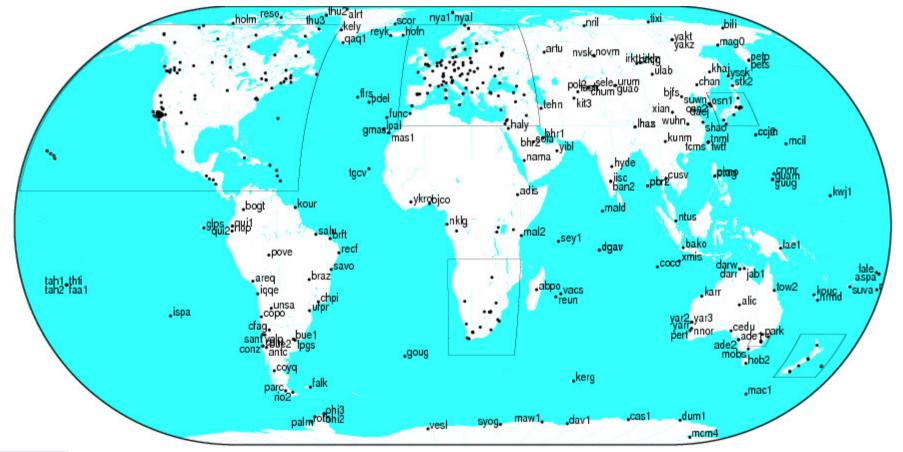
ICG-6 Meeting, Tokyo, Japan, 4-9 September 2011

Acknowledge some material provided by Urs Hugentobler, Chair IGS 2011

IAG, GGOS & IGS

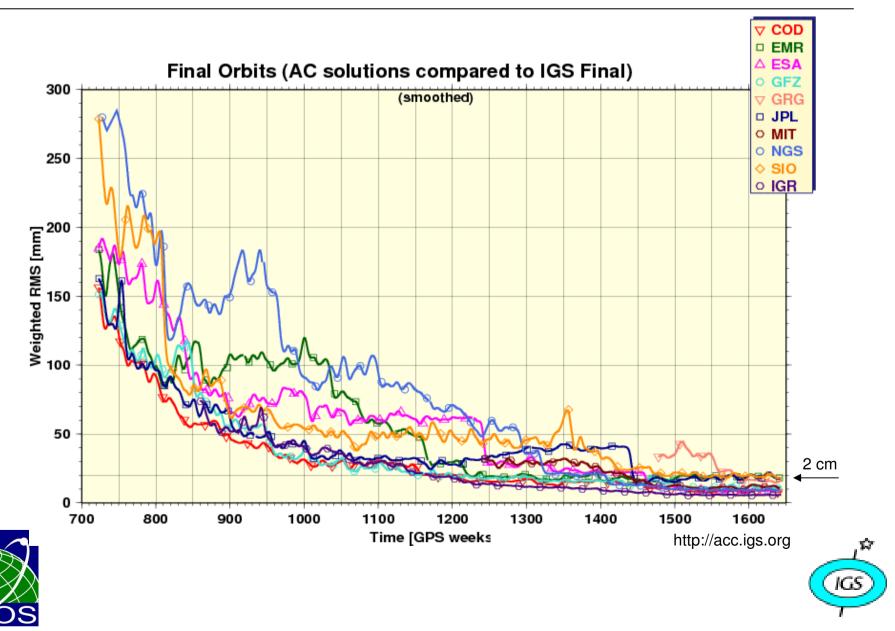

- The International Association of Geodesy (IAG) represents the geosciences associated with the **geometric** & **gravimetric** aspects of the dynamic Earth.
- IAG is part of IUGG (& ICSU). The oldest of the international scientfic associations... 150yrs old in 2012.
- IAG's Global Geodetic Observing System (GGOS) integrates all IGS Services... to coordinate geodetic measurements, analysis and product generation to support science and society.
- The IAG's International GNSS Service (IGS) is a component of GGOS.
- The IGS coordinates GNSS tracking, data analysis and product generation to support GGOS and other users.
- Key to approach: sharing investments and operational costs by pooling the resources of many (> 200) organisations to maintain an independent ground tracking network and generate high accuracy products ... voluntary federation, reliability through redundancy, data & products freely available to all users.

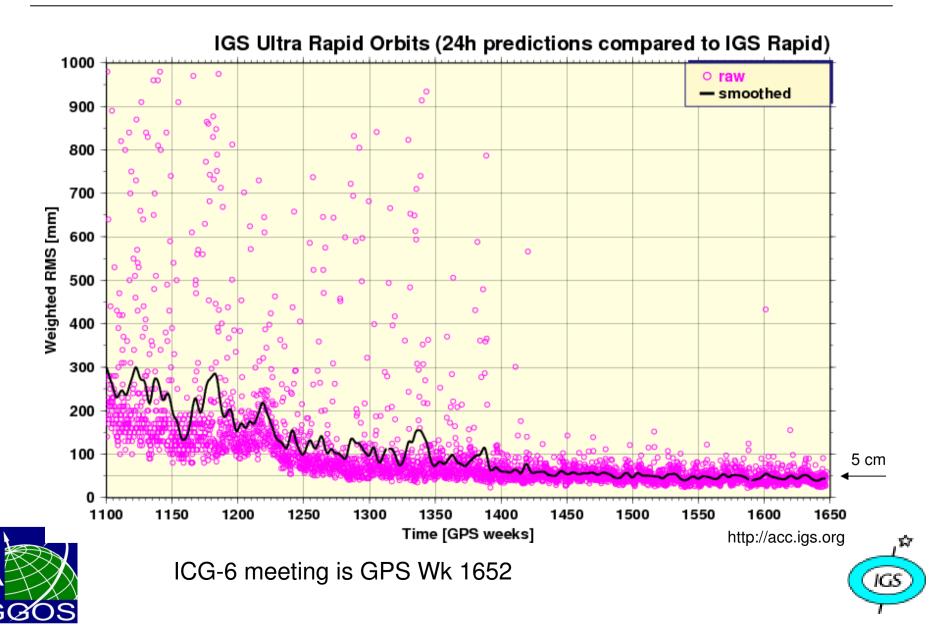
International GNSS Service (IGS)


- Potential of GPS for Geodesy and Geodynamics was recognised in the late 1980's.
- Start of IGS Test Campaign in June 1992. *Official Service of the IAG since 1994*.
- Renamed "International GNSS Service" in March 2005. *Part of GGOS*.
- Products:
 - orbits
 - clock corrections
 - Earth orientation parameters
 - station positions and velocities
 - troposphere parameters
 - ionosphere maps
- GPS and GLONASS tracking
 - & products.

IGS Tracking Network

• Over 380 active global tracking stations

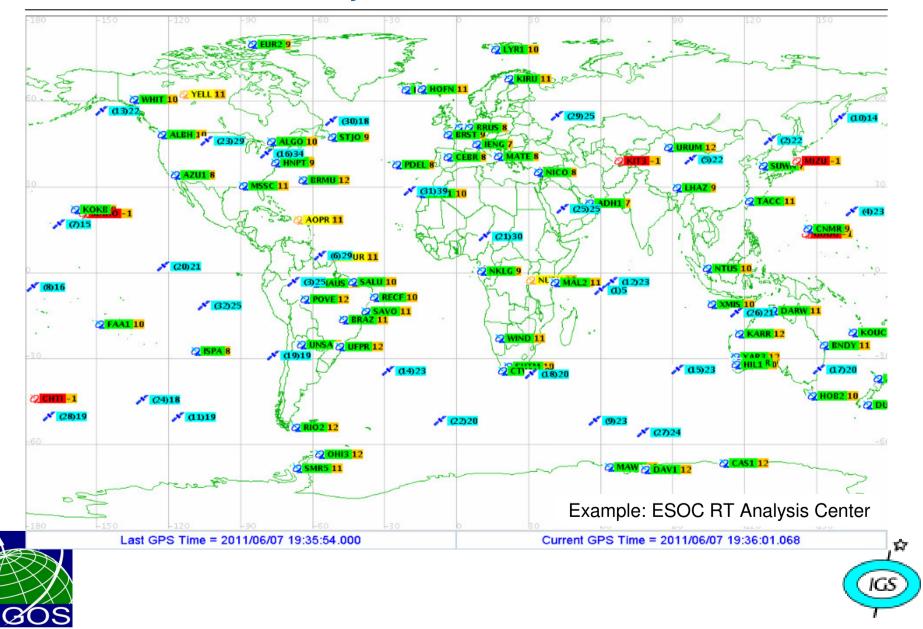


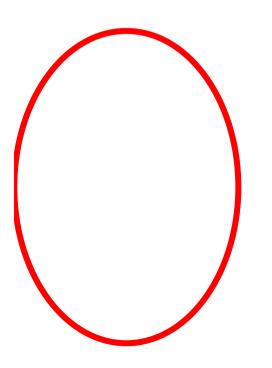

http://igs.org

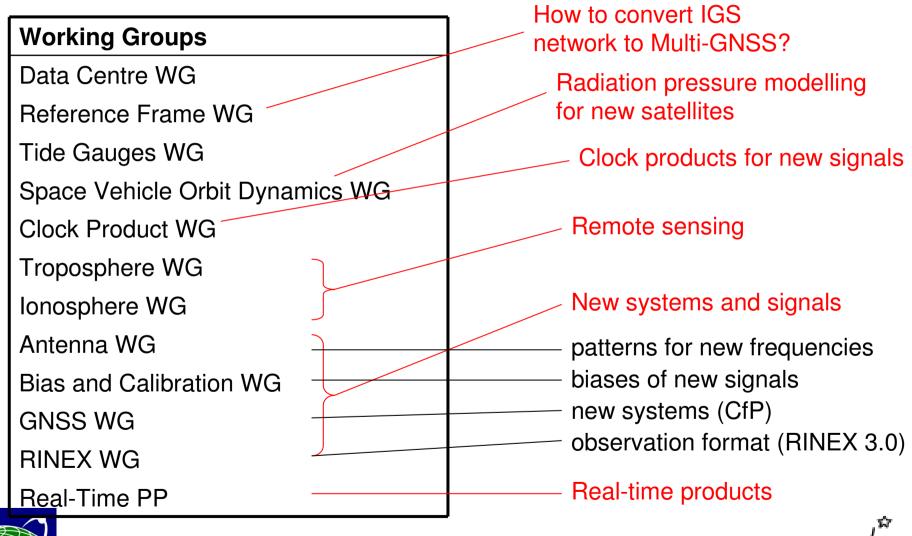
IGS Orbits

G

IGS Ultra Rapid Orbits


Real-Time Pilot Project


- Real-time product generation is part of IGS Strategic Plan.
- Infrastructure:
 - More than 120 active real-time stations... see map
 - Data streaming using NTRIP
 - Close link to RTCM... standard RT data/product formats for users
- Analysis:
 - 6 real-time analysis centres
 - Real-time orbit & clock computations
- Future:
 - Real-time service to commence in 2013
 - Include new systems and signals in analysis
 - Expand IGS tracking network for Multi-GNSS... see M-GEX


Real-Time Pilot Project

QuickTime™ and a decompressor are needed to see this picture.

M-GNSS: IGS Working Groups and Pilot Projects

Instrument Issues: Example of Galileo Signals

			A PRS	C1A	L1A	
Galileo	E1	1575.42	B I/NAV OS/CS/SoL	C1B	L1B	Novatel 15A
			C no data	C1C	L1C	
			B+C	C1X	L1X	
			A+B+C	C1Z	L1Z	Delta-G2T
	E5a	1176.45	I F/NAV OS	C5I	L5I	-Septentrio
			Q no data	C5Q	L5Q	
			I+Q	C5X	L5X	
	E5b	1207.140	I I/NAV OS/CS/SoL	C7I	L7I	GeNeRx1 *)
			Q no data	C70	L70	
			I+Q	C7X	L7X	Leica
	E5	1191.795	Ι	C8I	L8I	GRX1200
	(E5a+E5b)		Q	C8Q	L8Q	GGPRO
			I+Q	C8X	L8X	
			A PRS	C6A	L6A	
			B C/NAV CS	C6B	L6B	
	E6	1278.75	C no data	C6C	L6C	*) depending
			B+C	C6X	L6X	on receiver
			A+B+C	C6Z	L6Z	configuration
						W .

RINEX 3.0x Observation File

3.00 M (Mixed) RINEX VERSION / TYPE OBSERVATION DATA 20101129 235945 GMT PGM / RUN BY / DATE NtripJPStoRnx congo Source NTRIP stream 141.74.33.12/MAHO0 COMMENT MAHO0 MARKER NAME Μ MARKER NUMBER Hauschild DLR/GSOC **OBSERVER / AGENCY** Delta 00049 JAVAD TRE G3TH DELTA 3.4.0a0 Q1 REC # / TYPE / VERS ANT # / TYPE 09330045 LEIAR25.R3 LEIT -5466067.0500 -2404333.4000 2242123.0100 APPROX POSITION XYZ ANTENNA: DELTA H/E/N 0.0000 0.0000 0.0000 20 C1C L1C D1C S1C C2X L2X D2X S2X C1W L1W D1W S1W C2W SYS / # / OBS TYPES G L2W D2W S2W C5X L5X D5X S5X SYS / # / OBS TYPES 16 C1C L1C D1C S1C C2C L2C D2C S2C C1P L1P D1P S1P C2P R SYS / # / OBS TYPES L2P D2P S2P SYS / # / OBS TYPES 8 C1X L1X D1X S1X C5X L5X D5X S5X SYS / # / OBS TYPES Е Л 20 C1C L1C D1C S1C C1X L1X D1X S1X C1Z L1Z D1Z S1Z C2X SYS / # / OBS TYPES L2X D2X S2X C5X L5X D5X S5X SYS / # / OBS TYPES 8 C1C L1C D1C S1C C5X L5X D5X S5X S SYS / # / OBS TYPES 12 C1? L1? D1? S1? C2? L2? D2? S2? C3? L3? D3? S3? SYS / # / OBS TYPES С.

¹ many new observation types

new systems

IGS CfP for Multi-GNSS Global Experiment

- Motivation:
 - New and modernised systems and signals upcoming (or available)
 - Receivers that have Multi-GNSS capabilities are available
 - IGS must prepare for incorporation of new GNSS measurements
- Goal:
 - Experiment to operate a global network of new receivers capable of tracking new signals in addition to GPS & GLONASS
 - Support JAXA's Multi-GNSS Monitor Network activities
- Tasks:
 - Set-up tracking network of Multi-GNSS receivers
 - Make tracking data files publicly available
 - Experiment with data flow, qualify equipment, signals, analysis...
 - Upgrade IGS network to Multi-GNSS
 - Generate Multi-GNSS products

CfP for M-GEX

- Call-for-Participation issued... *http://igs.org/*
- Call for new stations:
 - Expansion of *continuous tracking network* according to IGS standards
 - Include other stations that may be more temporary or do not meet IGS standards that can enable *engineering* analysis of Multi-GNSS
 - Track as many signals as possible, focus on GNSS, but can include SBAS
 - The experiment is in parallel with ongoing IGS operations
 - Use COTS M-GNSS receivers... but SW receivers encouraged
 - RINEX 3.01 data format
 - Make tracking data publicly available through Data Centres
 - Real-time data streaming option to support RT-PP activities, and eventually production of RT products

CfP for M-GEX

- Call for Data Centres:
 - Archive tracking data and make it publicly available
 - No interference to daily IGS operations
- Call for Collaboration with other federated networks to realise global M-GNSS network:
 - JAXA's MGM-Network, CONGO, ...
- Following steps:
 - Fill in gaps in site distribution and signal coverage
 - Not to disrupt the daily IGS operations
 - Include Real-Time tracking aspect and signal utilisation
 - Analysis of the new M-GNSS measurements to be conducted by IGS ACs on a 'best efforts' basis
 - Analysis and engineering analysis by other interested groups strongly encouraged

CfP for M-GEX

- Time schedule:
 - Early Aug 2011 Call for Participation released
 - Oct 30, 2011 Proposals due
 - Dec 15, 2011 Proposals evaluated by the Organising Committee
 - Feb 1, 2012 Experiment begins
 - Jul 23-27 First results evaluation and discussion at IGS 2012 Workshop, Olsztyn, Poland
- Note: Interested organisations can join at any time.
- CfP also being circulated by GGOS soliciting proposals for a **core global network of multi-technique geodetic sites** to define and improve the Terrestrial Reference Frame and provide essential data for other space geodesy requirements, *including M-GNSS monitoring & IGS products*.

Concluding Remarks

- More than 100 GNSS satellites will be available in the near future.
- Not only more satellites, but also more and better signals, better clocks, etc.
- M-GNSS is vital for IAG/GGOS mission... upgraded GGOS core infrastructure.
- IGS is preparing for incorporation of new systems and signals into routine operations.
- CfP for IGS Multi-GNSS Global Experiment (IGS M-GEX) has been issued.
- Seeking groups that will track, archive, or analyse new signals.
- First results at IGS Workshop in Olsztyn, Poland, 23–27 July 2012.
- M-GEX can also provide raw data and/or products to support other (national or international) Multi-GNSS initiatives... *let's minimise duplication of global M-GNSS ground networks and ACs*.

