

Session 1.3: Worked examples of Terrestrial Reference Frame Realisations

Determining Coordinates in a Local Reference Frame from Absolute ITRF Positions: A New Zealand Case Study

Nic Donnelly Land Information New Zealand

Overview

- Realization of a reference frame over a limited area (tens to hundreds of kilometres) is the domain of the surveyor
- Transformation between reference frames using standard transformations
- Transformation between epochs using a velocity model
- Concepts illustrated through a worked example

Key Concepts

- Local, project-specific reference frame realizations can be made by the surveyor
- Incorporating velocities may be new, but the calculations are simple
- It is vital to check the accuracy of your realization
- A concise but clear description of how the coordinates were generated is needed

• Government geodetic agencies need to support surveyors as they transition to using dynamic datums

Why is this important?

- Getting precise coordinates in the latest ITRF realization has been greatly simplified through the provision of online GNSS processing services. Many of these provide absolute positions
- But most countries do not use the latest version of ITRF as their official datum
- So we need to be able to transform coordinates from ITRF to the local datum
- We could always just make relative connections to control provided by the national geodetic agency, but this is not always the most efficient method
- Both coordinates may be required: ITRF for maximum precision and global consistency and local coordinates to meet regulatory requirements and ensure consistency with local datasets

IAG/FIG Commission 5/ICG Technical Seminar Reference Frame in Practice Rome, Italy 4–5 May 2012

Scenario

- Client has requested control for a large project in New Zealand
- They are a global company, and hold all of their data in the latest ITRF realization. Therefore need ITRF2008 coordinates
- To meet regulatory requirements, data must also be provided in the official datum. Therefore need NZGD2000 coordinates
- Client also requires a means of transforming between the two sets of coordinates
- •Seven control stations (GLDB, NLSN, KAIK, WGTN, MAST, DNVK, WANG)
- •Three new stations (CLIM, LEVN, WITH)

ITRF2008

- We do all our processing in the more accurate reference frame, and then transform to any other desired reference frame and epoch
- Generation of high precision ITRF coordinates usually requires scientific GNSS processing software, not used by most surveyors
- Therefore choose to use an online processing service (in this case JPL precise point positioning)
- This will give us ITRF2008 coordinates, in terms of the reference frame used by the IGS orbital products (IGS08).
- Process 24-hour sessions
- We end up with IGS08 coordinates at observation epoch, which is 2012 Julian Day 60 (2012.16)

Transforming Coordinates

- Throughout, we are working in Cartesian (geocentric) coordinates. Any other transformations, such as to a mapping projection, are made at the end
- Step 1: Identify stations at which coordinates are available in both the desired reference frames
- Step 2: Use velocities at each station to obtain coordinates at a common epoch in the two reference frames
- Step 3: Calculate *appropriate* transformation parameters, using least squares. This will usually be three translation/rotation parameters, or three translation/rotation parameters plus one scale parameter over small portions of the Earth's surface
- Step 4: Use the transformation parameters to convert coordinates between reference frames

IAG/FIG Commission 5/ICG Technical SeminarReference Frame in PracticeFIGRome, Italy 4–5 May 2012

Bilinear Interpolation

IAG/FIG Commission 5/ICG Technical SeminarReference Frame in PracticeRome, Italy 4–5 May 2012

Calculating Velocity – Station GLDB

$$\begin{split} U(v_e) &= -0.0002 + [(172.530 - 172.5)/(172.6 - 172.5)][-0.0011 - -0.0002] = -0.0005\\ U(v_n) &= 0.0439 + [(172.530 - 172.5)/(172.6 - 172.5)][0.0443 - 0.0439] = 0.0440\\ W(v_e) &= -0.0011 + [(172.530 - 172.5)/(172.6 - 172.5)][-0.0020 - -0.0011] = -0.0013\\ W(v_n) &= 0.0440 + [(172.530 - 172.5)/(172.6 - 172.5)][0.0444 - 0.0440] = 0.0441\\ P(v_e) &= -0.0013 + [(-40.827 - -40.9)/(-40.8 - -40.9)][-0.0005 - -0.0013] = -0.0007\\ P(v_n) &= 0.0441 + [(-40.827 - -40.9)/(-40.8 - -40.9)][0.0440 - 0.0441] = 0.0441 \end{split}$$

IAG/FIG Commission 5/ICG Technical Seminar Reference Frame in Practice FIG Rome, Italy 4–5 May 2012

Transforming Velocities to Cartesian Reference Frame

- Recall that we are always working in Cartesian (XYZ) coordinates, so need XYZ velocities. Call this column vector \mathbf{v}_{XYZ}
- But the velocity model is topocentric (ENU). Call this column vector \mathbf{v}_{ENU}
- We can convert between the two using the geocentric to topocentric rotation matrix, \mathbf{R}_{GT} , for the point's latitude (ϕ) and longitude (λ)

Transforming Velocities to Cartesian Reference Frame – Station GLDB

• $\mathbf{v}_{XYZ} = \mathbf{R}_{GT}^{-1} \mathbf{v}_{ENU}$

$$\begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} = \begin{bmatrix} -0.130 & -0.992 & 0 \\ -0.648 & 0.085 & 0.757 \\ -0.750 & 0.098 & -0.654 \end{bmatrix}^{-1} \begin{bmatrix} -0.0007 \\ 0.0441 \\ 0 \end{bmatrix} = \begin{bmatrix} -0.0285 \\ 0.0045 \\ 0.0333 \end{bmatrix}$$

Calculating NZGD2000 Epoch 2012.16 Coordinates – Station GLDB

• $\mathbf{x}_{NZGD \text{ Epoch } 2012.16} = \mathbf{x}_{NZGD2000 \text{ Epoch } 2000.0} + 12.16 \mathbf{v}_{XYZ}$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}_{2012.16} = \begin{bmatrix} -4792405.83 & 1 \\ 628416.781 \\ -4148068.66 & 9 \end{bmatrix} + 12.16 \begin{bmatrix} -0.0285 \\ 0.0045 \\ 0.0333 \end{bmatrix} = \begin{bmatrix} -4792406.17 & 7 \\ 628416.835 \\ -4148068.26 & 3 \end{bmatrix}$$

IAG/FIG Commission 5/ICG Technical Seminar Reference Frame in Practice Rome, Italy 4–5 May 2012

Calculating Transformation Parameters

- Use least squares to obtain the best solution, as we have more observations than parameters
- Functional model: At = b, where A is the design matrix, b = Calculated (IT96) minus observed (IGS08) and t is the matrix of unknown transformation parameters
- Stochastic model: W = I, in this case we choose to weight all coordinates equally
- So $\mathbf{t} = (\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{b}$, the standard least squares solution
- And Cov(t) = $\sigma_0^2 (\mathbf{A}^T \mathbf{A})^{-1}$
- The Aposteriori Standard Error of Unit Weight is $\sigma_0^2 = (\mathbf{A}^T \mathbf{t} \mathbf{b})^T (\mathbf{A}^T \mathbf{t} \mathbf{b})/(\text{degrees of freedom})$
- This is a linear problem, so no need to iterate
- Note: if you wish to weight your coordinates: $\mathbf{t} = (\mathbf{A}^{\mathsf{T}}\mathbf{W}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{W}\mathbf{b}$

IAG/FIG Commission 5/ICG Technical Seminar Reference Frame in Practice													
Kere	rence			Ŗ	ar	ne in		Prac)	IC	C IAG FIG 33 UGHEDIARN POOD		
Rome,	Italy 4–	5	\wedge	12	ay 2	2012	1		5		1 Plan		
GLDB	x	∏ 1	0	0]		- 4792406.177	[- 4792406.117]	- 0.06]		
	у	0	1	0		628416.835		628416.851		-0.016			
	z	0	0	1		- 4148068.263		-4148068.23		-0.033			
NLSN	x	1	0	0		- 4775888.435		- 4775888.398		-0.037			
	У	0	1	0		549740.211		549740.2		0.011			
	Z	0	0	1		-4177981.109		-4177981.061		-0.048			
KAIK	x	1	0	0		-4685479.521		- 4685479.471		- 0.05			
	у	0	1	0		531055.197		531055.245		-0.048			
	Z	0	0	1		- 4280819.034		- 4280819.009		-0.025	3.22×10^{-5} 0 0		
WGTN	x	1	0	0		- 4777269.652		- 4777269.602		- 0.05			
	<i>y A</i> =	= 0	1	0	<i>b</i> =	434270.387	-	434270.406	=	- 0.019			
	Z.	0	0	1		- 4189484.267		-4189484.221		- 0.046	$\begin{bmatrix} 0 & 0 & 3.22 \times 10^{-5} \end{bmatrix}$		
MAST	x	1	0	0		- 4801933.943		- 4801933.888		-0.055			
	У	0	1	0		370789.222		370789.24		-0.018			
	Z	0	0	1		-4167752.305		-4167752.257		- 0.048			
DNVK	x	1	0	0		- 4860760.939		- 4860760.892		-0.047			
	у	0	1	0		325692.752		325692.771		- 0.019			
	z	0	0	1		-4103646.312		- 4103646.255		-0.057			
WANG	x	1	0	0		- 4888073.52		- 4888073.493		-0.027			
	у	0	1	0		443004.771		443004.775		- 0.004	معدد معدين		
	Z	0	0	1		- 4060015.325		- 4060015.31		-0.015			
Changers													

Sponsors:

Three Parameter Transformation Results

- SEUW = 0.015 m
- $t_x = -0.046 \pm 0.006 \text{ m}$
- $t_y = -0.016 \pm 0.006 \text{ m}$
- $t_z = -0.039 \pm 0.006 \text{ m}$

• Note: In this case least squares simply gives us the average of the coordinate differences, so we could have avoided the matrix algebra, but would not get the precision information so easily

[]

Four Parameter Transformation Results

- SEUW = 0.015 m
- $t_x = -0.103 \pm 0.211 \text{ m}$
- $t_y = -0.011 \pm 0.021 \text{ m}$
- $t_z = -0.088 \pm 0.183 \text{ m}$
- s = $-1.19 \times 10^{-8} \pm 4.40 \times 10^{-8}$
- None of the parameters is significant, so this is not the best transformation

Calculate IT96 Epoch 2012.16 for CLIM

• **X**_{NZGD Epoch 2012.16} = **X**_{IGS08 Epoch 2012.16} + **t**

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}_{NZGD \ 2000 \ 2012.16} = \begin{bmatrix} -4793404.12 \ 0 \\ 407108.010 \\ -4175081.52 \ 0 \end{bmatrix} + \begin{bmatrix} -0.046 \\ -0.016 \\ -0.039 \end{bmatrix} = \begin{bmatrix} -4793404.16 \ 7 \\ 407107.994 \\ -4175081.55 \ 9 \end{bmatrix}$$

Calculate IT96 Epoch 2000 for CLIM

• $\mathbf{x}_{NZGD \ Epoch \ 2000} = \mathbf{x}_{NZGD2000 \ Epoch \ 2012.16} - 12.16 \mathbf{v}_{xyz}$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}_{NZGD\ 2000} = \begin{bmatrix} -4793404.16\ 7 \\ 407107.994 \\ -4175081.55\ 9 \end{bmatrix} -12.16 \begin{bmatrix} -0.0196 \\ 0.0277 \\ 0.0250 \end{bmatrix} = \begin{bmatrix} -4793403.92\ 8 \\ 407107.657 \\ -4175081.86\ 4 \end{bmatrix}$$

Calculate IT96 Epoch 2000 for CLIM, LEVN, WITH

Station	IGS08 Epoch 2012.16 (XYZ)	Velocity (ENU)	NZGD2000 Epoch 2000.0 (observed)	NZGD2000 Epoch 2000.0 (GDB)	Difference (ENU)
CLIM	-4793404.120	-0.026	-4793403.928	-4793403.914	0.007
	407108.010	0.0333	407107.657	407107.663	-0.008
	-4175081.5204	0	-4175081.864	-4175081.841	0.025
LEVN	-4833775.0621	-0.0164	-4833774.861	-4833774.854	0.006
	402451.2374	0.0335	402451	402451.006	-0.011
	-4127913.8068	0	-4127914.155	-4127914.134	0.018
WITH	-4753506.3677	-0.0195	-4753506.156	-4753506.143	0.009
	500939.4145	0.0352	500939.133	500939.14	-0.002
	-4209496.456	0	-4209496.815	-4209496.801	0.018

Summary

- Absolute positioning is readily available, and its use will increase
- These positions are in terms of the satellite orbit reference frame (latest IGS realization of current ITRF)
- Software to convert to a local reference frame may not exist, or may need to be tested
- This conversion can be done by the surveyor using a spreadsheet and the procedure outlined in this presentation
- Worked examples are very useful to aid understanding of reference frame and epoch transformations. Government agencies should make these more readily available

Questions and References

- <u>http://apps.gdgps.net/</u> (JPL PPP service)
- http://apps.linz.govt.nz/gdb/index.aspx (LINZ Geodetic Database)
- For any questions please contact:

Nic Donnelly ndonnelly@linz.govt.nz

25

