

The TC-OFDM System for Seamless Outdoor & Indoor Positioning in Wide Area

Prof. Deng Zhongliang

Beijing University of Posts and Telecommunications

Beijing, China

1.1 Requirement Analysis

1.2 Limitation of GNSS in indoor positioning

□ The strength of GNSS signal is about -130dBm on the ground (without sheltering).

Receiver Sensitivity

Signal Attenuation(L-Band)

Year	Acquisition Sensitivity (dBm)	Tracking Sensitivity (dBm)		Window	Wall	Mental	Ceiling
1997	-142	-150		3dB	18dB	25dB	
2004	-142	-159	Attenuation				23dB
2012	-148	-162					

Conclusion: GNSS can not provide stable positioning services in urban canyon or indoor environments.

2012-11-22

1.3 The Current Situation of Indoor Positioning

Conclusion: The research on Indoor & Outdoor Positioning based on the integration of mobile BS & GNSS is promising and meaningful.

2012-11-22

5

2.1 The Architecture of TC-OFDM System

Beijing University of Posts and Telecommunications

2.2 Signal Design

9

Strength of Signal Coverage

Signal Coverage

Points	BS1 (Service BS)	BS2	BS3	BS4	BS5	BS6	BS7
A1、A2	-92dBm	-127dBm	uncertain	-91 dBm	-91dbm	uncertain	-127dBm
B1、B2	-72dBm	-109dBm	-91dBm	-109 dBm	-109 dBm	-91 dBm	-109dBm
D1, D2	-56 dBm	-91dBm	uncertain	-127dBm	-127dbm	uncertain	-91dBm
2012	-11-22	Beijing Univ	10				

2.3.3 Differential Positioning with TDOA

CI	ide	1	1
3	IUG	7 I	

U3 User, 15/10/2012

2.3.4 TC-OFDM & GNSS Integration

The function of TC-OFDM System:

- 1. Sending GNSS differential signal through communication channel;
- 2. Combined Positioning Solution;
- 3. Providing assisted information for shortening TTFF.

2.4 TC-OFDM & GNSS Integration

Promoting the Accuracy of Positioning in 3D:
Optimizing the DOP of satellite positioning system;

•Providing 1m vertical accuracy positioning

result. Integrated Non-integrated Algorithm Positioning Acurracy Simulation Diagram

2012-11-22

Integrated positioning : improve the accuracy up to 60% Fast Satellite Acquisition Assisted with TC-OFDM

5 times faster for acquisition

Beijing University of Posts and Telecommunications

13

3.1 Prototype of TC-OFDM System

3.2 Positioning Test of TC-OFDM Terminals

Indoor Positioning

Messages Monitoring

Outdoor Positioning

Signal Monitoring

16

2012-11-22

Beijing University of Posts and Telecommunications

3.3 Results of Outdoor Positioning Test

		Stand	ard Devla	tion of th	e Result < 1	m	
Testing the integr	the positioning accuracy of ated system at 8 points in	No.	RMS (X)	RMS (Y)	RMS (Z (Z) 27)	
upbanarea	yon	G9	0.39	0.65	0.62 19		
		G10	0.37	0.71	0.68 37		
12		G11	0.33	0.55	0.53 50		
			0.52	0.46	0.55		
	G7	0.4	0.4	0.44			
	Absolute Precision of the Result < 3m						
						1 =	
11		No.	X	Y	Z		
		No. G9	X -0.36	Y 2.17	Z -1.1		
		No. G9 G10	X -0.36 -0.25	Y 2.17 1.69	Z -1.1 -1.4		
		No. G9 G10 G11	X -0.36 -0.25 -0.66	Y 2.17 1.69 1.58	Z -1.1 -1.4 -1.02		

3.4 Results of Indoor Positioning Test

The standard deviation (Inner average precision)		Standard Deviation of the Result				t
 is almost less than 1.5m; The error of point-to-point distance measurement is less than 3m; 			RMS (X)	RMS (Y)	RMS (Z)	
•The error of height measurement is less than 1m.			0.64	0.57	0.45	
0.5 -		T1	0.65	0.39	0.63	
0 -		T2	0.76	0.74	0.36	
·0.5 -	1 2 3 4 5 7 8 9 10 11 12 3 F	T3	0.64	1.07	0.3	
8 1 -	4 F	T4	0.05	0.04	0.44	
-1.5 -	Point	T5	0.75	0.7	0.52	
	Vertical Accuracy	T6	2.98	0.72	0.43	
4		T7	0.79	0.74	0.6	
2		T8	0.34	0.16	0.51	
	0 2 1 3 4 5 7 8 9 10 12 4 F 4 F	T9	0.23	0.16	0.57	
<u>ل</u> ے ا		T10	0.15	0.48	0.58	
	Point	T11	0.94	0.58	0.33	
	Horizontal Accuracy	T12	0.29	0.84	0.59	
2012-11-22	Beijing University of Posts and Telecon	nmunicat	tions		18	

3.5 Comparison with Other Technique

Positioning Methods	Network	Accuracy	Feature	
CELL-ID (Cell- Identity)	All Mobile Network	250m- 20km		
EFLT (Enhanced Forward Link Trilateration)	CDMA	250-350m	Low cost positioning signal covering;	
AFLT (Advanced Forward Link Trilateration)	CDMA	50-200m		
E-OTD (Enhanced Observed Time Difference)	GSM	50-200m	to meet the demand of indoor	
TOA/TDOA (Time of Arrival/Time Difference Of Arrival)	All Mobile Network	40-150m	positioning service.	
AOA(Arrival Of Angle)	All Mobile Network	50-150m		
TC-OFDM (Time & Code Division-Orthogonal Frequency Division Multiplexing)	Mobile Communication Network	3-5m	Multi-signal: the positioning signal and the service signal; Low cost of signal covering; High accuracy.	
2012-11-22 Beijing University of Po	sts and Telecommun	ications	High accuracy.	

3.6 Demonstration & Application of TC-OFDM System

Plan for TC-OFDM

2013: Demonstrated in a large scale in Tianjin

2015: Applied domestically in 339 cities

The experimental and commercial frequency band has been authorized.

Tianjin Binhai New Area For Demonstration

4. Conclusions

The TC-OFDM System:

□Offers a navigation and communication integration scheme with low cost.

Promotes the continuity, stability and accuracy of indoor & outdoor positioning.

□Achieves 1m vertical accuracy and 3-5m horizontal accuracy.

Thank you

for your attention!