

CENTRE NATIONAL D'ÉTUDES SPATIALES

Time Transfer with Integer PPP (IPPP)

J. Delporte, F. Mercier, F. Perosanz (CNES) G. Petit (BIPM)

Seventh Meeting of the International Committee on Global Navigation Satellite Systems(ICG) Beijing,5th November (Mon.) - 9th November (Frl.),2018

Outline

- Time transfer
- GPS CP TT : advantages of integer ambiguity resolution
- GRG products
- Some results

Time transfer : how to compare distant clocks ?

Clock trip

Difficult for long distances

Remote transfer : 3 basic approaches

- ◆ One-way → GNSS Precise Point Positioning (PPP)
- Common-view
- Two-way

GPS carrier phase time transfer

Decisive advantage of GPS carrier phase observables : lower noise

- ... but some drawbacks :
- Ambiguous
- Sensitive to the model precision (frequency bias or drift)
- Discontinuities at day boundaries
- Taking into account the integer nature of the ambiguities allows to overcome most of these problems

How to handle day-boundary discontinuities ?

- processing of longer batches
 - ✤ reports the problem to boundaries of batches

continuous processing

♦ heavy and some errors effects may accumulate, e.g. [Dach, 03]

- concatenation using overlapping series, e.g. [Bruyninx, 99] or [Larson, 00]
 Addition of a random-walk noise component, limitation of the long-term stability
- sliding window, e.g. [Guyennon, 07]

✤ minimize rather than solve the problem

more sophisticated methods [Dach, 04] : clock handover and ambiguity stacking

Solution to compute with each individual daily solution to compute a continuous clock solution (normal equations and ambiguities of the overlapping passes)

 \Rightarrow not usable by external users who have access only to the daily ephemeris and clocks

Integer ambiguity advantages

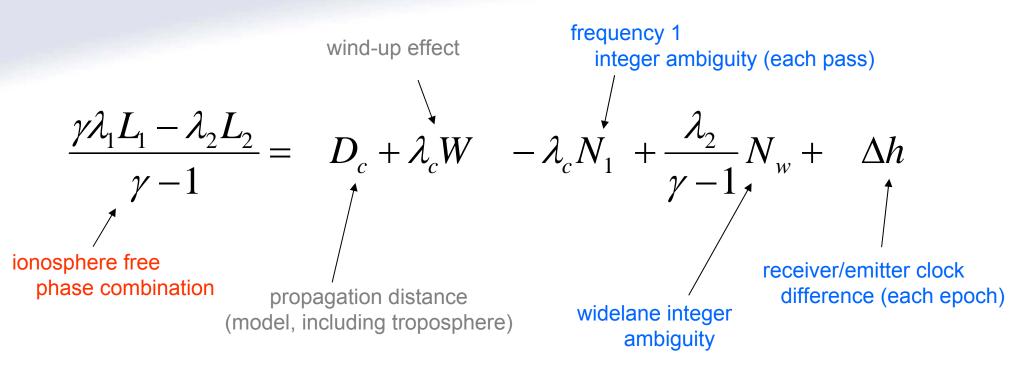
- Phase clock solutions are ambiguous and need to be aligned on the code for time transfer
 - Alignment on code by 1-day batches may create boundary discontinuities due to code noise
 - For integer ambiguities solutions, such discontinuities are integer numbers of λ_c and can be easily cancelled out

Ambiguity fixing method (1/2)

- Ambiguities fixed directly on the zero-difference phase measurements
 - Clocks and all parameters are solved for simultaneously with the ambiguity fixing

Step 1 : Wide-lane

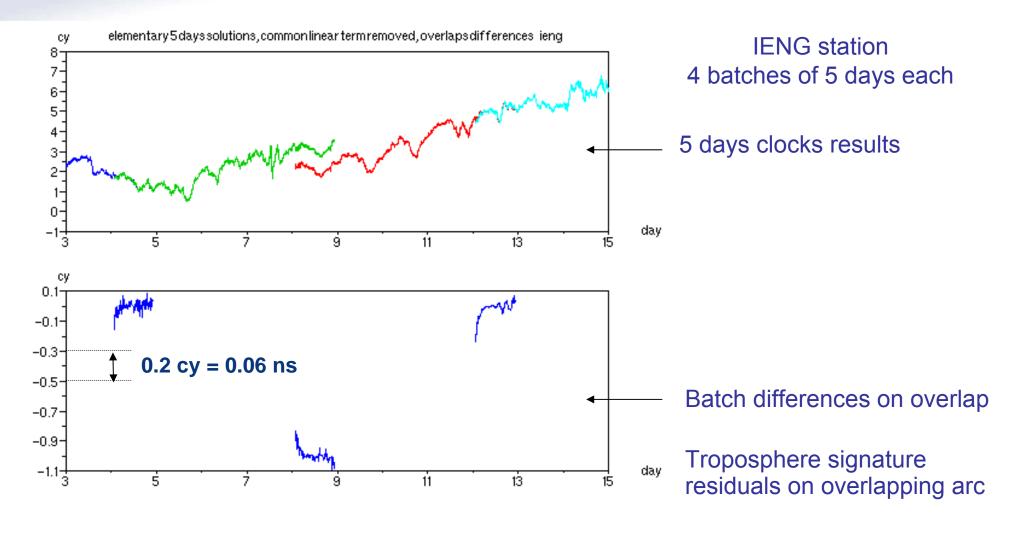
- Fix the widelane ambiguity (ambiguity associated to L2-L1), using the 4-observable Melbourne-Wübbena combination
- ⇒ Fixing at pre-processing level using only the receiver measurements and a set of satellite biases (Wide-lane Satellite Biases, WSB), available on GRG <u>ftp site</u> (grgxxxx.wsb, daily update)


Step 2 : Narrow-lane

- Use of iono-free code and phase combinations
- Remaining ambiguity associated to an equivalent λ of 10.7 cm = Narrow-lane ambiguity
- This ambiguity fixing is performed at zero-difference level, using the complete models and parameterization (orbits, stations coordinates, clocks...). Narrow-lane ambiguity are fixed using a bootstrap method applied on the normal equations constructed with the floating solution
- Number of ambiguities to solve for is typically 7000, and more than 95% of the phase measurements have a fixed ambiguity at the end of the process

Ambiguity fixing method (2/2)

Zero-difference iono-free phase equation


<u>Floating solutions</u> : direct identification of floating ambiguities (equivalent wavelength of the N₁, N₂ integer problem is too small)

Integer solution : 1st step = separate integer N_w identification 2nd step = iono-free phase solution with integer N_1 (λ_c = 10.7 cm)

Day-boundary discontinuities

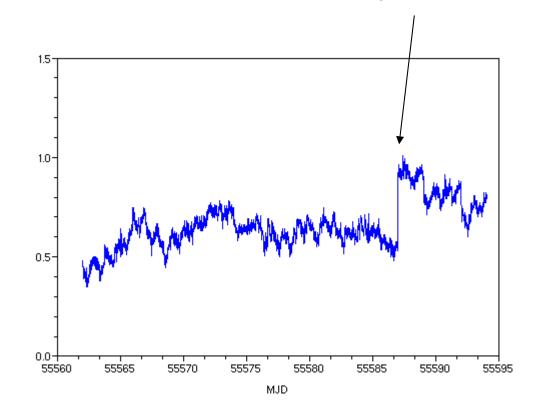
Receiver clock differences are defined up to an overall unknown number of cycles

GRG products

■ GRG = new IGS Analysis Center since May 2010, CNES-CLS joint effort

GRG products :

- based upon processing of a global network of GPS stations
- integer ambiguity resolution applied (identification of wide-lane satellite biases : WSB, called grgxxxx.wsb)
- This allows to perform IPPP (PPP with integer ambiguity resolution) that provides continuous receiver clock solutions between two successive batches
- See : <u>www.igsac-cnes.cls.fr</u>



Results on KRIS/NICT

Batch-boundary discontinuity in GPSPPP

Differences between GPSPPP (floating PPP) and IPPP (in ns)

std = 0.08 ns
(computed before the
 discontinuity)

Conclusions

GRG products allows IPPP that provide continuous GPS CP TT, for instance with GINS software package

IPPP results compared to TWSTFT and GPSPPP

- Agreement with GPSPPP : STDEV = 0.08 ns GPSPPP batch-boundary discontinuities overlooked (these discontinuities have a median value of ~ 0.2 ns)
 Agreement with TWSTFT : STDEV = 0.3 ns
- Long term consistencies and code/phase biases to be further
- investigated
- Extension to other GNSS in progress