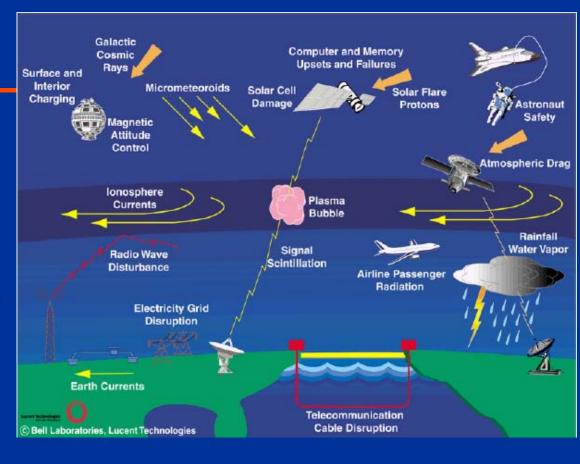


Introduction to International Space Weather Initiative (ISWI) and China's Participation (Meridian Project)

Chi Wang

National Space Science Center, CAS

Nov. 7, 2012


Outline

What is Space Weather?
International Space Weather Initiative (ILWS)
Chinese Meridian Project
International Meridian Circle Project

Space Weather

refers to conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and endanger human life and health.

USA National Space Weather Program Strategic Plan (March 1995)

International Space Weather Initiative eridian project (ISWI)

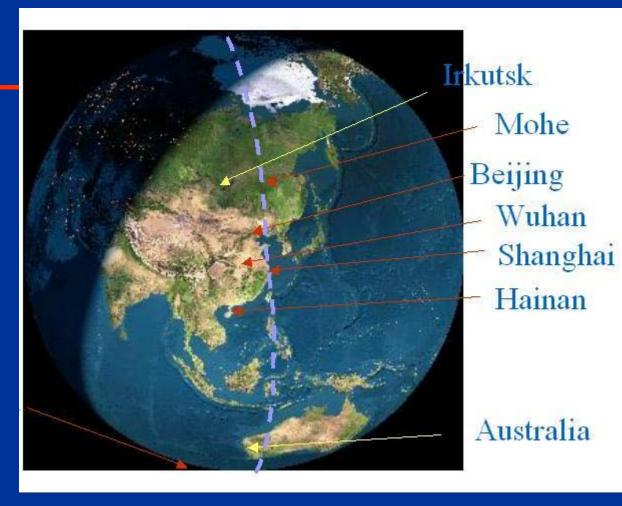
UN Endorsement

Opens new opportunities for collaboration in countries with little/no Space Physics by involving governments and Universities or National Labs

Encourages governmental response

ISWI Objectives

- Develop the scientific insight necessary to understand the science, and to reconstruct and forecast near-Earth space weather
 - Instrumentation and data analysis
 - Expand and continue deployment of new and existing instrument arrays
 - Expand data analysis effort for instrument arrays and existing data bases
 - Coordinate data products to provide input for physical modeling (Joint with other more extensive modeling efforts)
 - Input instrument array data into physical models of heliospheric processes
 - Develop data products that reconstruct past conditions in order to facilitate assessment of problems attributed to space weather effects
 - Coordinate data products to allow predictive relationships to be developed(Joint with Space Weather prediction organizations)
 - Develop data products to allow predictive relationships that enable the forecasting of Space Weather to be established
 - Develop data products that can easily be assimilated into real-time or near realtime predictive models



Education

- University and Graduate Schools
 - Encourage and support space science courses and curricula in Universities that provide instrument support
- Public Outreach
 - Develop public outreach materials unique to the ISWI, and coordinate the distribution

It is a Chinese multi-station chain along 120°E to monitor space environment, starting from Mohe, the most northern station in China, through Beijing、Wuhan、Guangzhou and extended to Chinese Zhongshan station in the Antarctic.

No	Station	Lat.	Lon.	Types of Observations
01	Mohe	53.5N	122.4E	Geomagnetic, Ionospheric
02	Manzhouli	49.6N	117.4E	Geomagnetic, Ionospheric
03	Changchun	44.0N	125.2E	Geomagnetic, Ionospheric
04	Beijing	40.3N	116.2E	Geomagnetic, Ionospheric, Lidar, MST Radar, IPS, Cosmic Rays, HF Doppler Array , All-sky Airglow Imager、F-P interferometer
05	Xinxiang	34.6N	113.6E	Geomagnetic, Ionospheric
06	Wuhan	30.5N	114.6E	Geomagnetic, Ionospheric, Lidar, MST Radar, HF Doppler Array, Meteor Radar,
07	Hefei	33.4N	116.5E	Lidar
08	Guangzhou	23.1N	113.3E	Geomagnetic, Ionospheric, Cosmic Rays
09	Hainan	19.0N	109.8E	Geomagnetic, Ionospheric, Lidar, All-sky Airglow Imager, VHF Radar, Sounding Rocket
10	Zhangshan	69.4S	76.4E	Geomagnetic, Ionospheric, HF Radar, Aurora
11	Shanghai	31.1N	121.2E	Geomagnetic, Ionospherie
12	Chongqing	29.5N	106.5E	Geomagnetic, Ionospheric
13	Qujing	25.6N	103.8E	Incoherent Scattering Radar
14	Chengdu	31.0N	103.7E	Geomagnetic, Ionospheric
15	Lhasa	29.6N	91.0E	Geomagnetic, Ionospheric

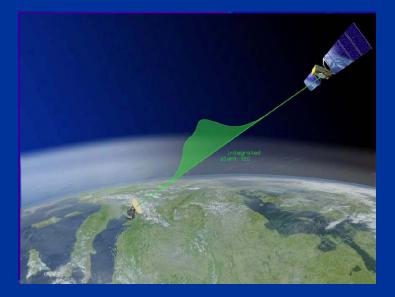
Spatial Coverage

IPS 观测 中子堆

散射雷达

数字测高仪

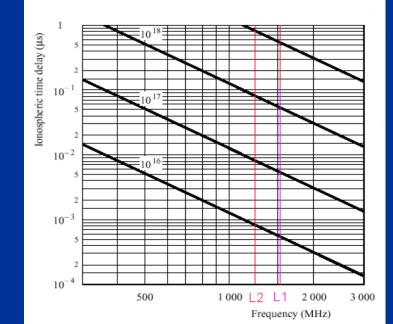
火箭

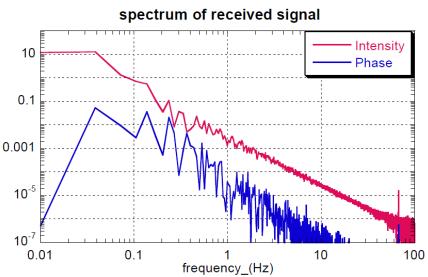

地磁仪

By

The Meridian Project

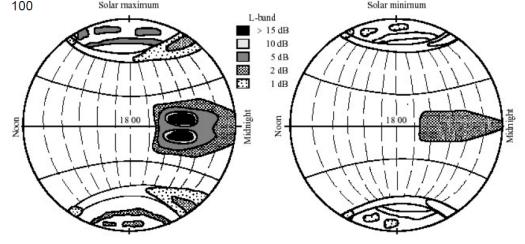
Effect of Ionosphere: Signal Delay




GNSS radio signals are slowed down as they propagate through the ionosphere, causing an increase in the propagation time of a signal when compared to the time of propagation through free space.

At present time, the signal delay is the main source of error to a satellite navigation system that operate at single frequency.

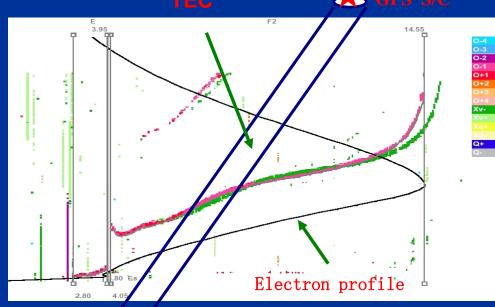
Without correction, this can lead to UERE of 50 m (User Equivalent Range Error for L1 if vTEC=120 TECu and Elevation angle = 12 deg using simple obliquity function).



Effect of Ionosphere: Scintillations

One of the most severe disruptions along a trans-ionospheric propagation path for Navigation signals is caused by ionospheric scintillations. Small-scale irregular structures are causing rapid variations in amplitude, phase and apparent direction of arrival.

There are two intense zones of scintillation, one at high latitudes and the other centred within $\pm 20^{\circ}$ of the magnetic equator [*Basu*]



Scintillations are a threat to continuity and availability of navigation signals since they can cause cycle slips and loss-of-lock in the receivers

CMP and **GNSS**

As we know, Ionospheric Total Electron Content (TEC) is the total number of electrons in a cylinder (with a unit area bottom) connecting the GNSS satellite and the ground receiver

Groud receiver Ionospheric TEC and electron profile • TEC variation and disturbance often affect accuracy of the satellite positioning/navigation

• The ionospheric scintillation often makes signal disorder in the positioning/navigation

• In order to improve the accuracy, it is needed to establish a model to describe the TEC

• The ionospheric profile is also needed to improve the accuracy in the positioning / navigation

• In the Meridian Project, the TEC Monitor, Scintillation Monitor and Ionosonde can provide quantity of data to improve the accuracy of the positioning/navigation

International Collaboration

The International Space Weather Meridian **Circle Program** (ISWMCP), proposal to connect 120°E and 60°W meridian chains of ground based monitors and enhance the ability of monitoring space environment worldwide.

