

A

filtering algorithm based on peer-to-peer adhoc networks for GNSS-challenged environments

ICG WG-B Application SG Meeting Location Based Services and Mass Market Applications Session 2

Pedestrian Indoor Navigation

- Convergence of personal navigation device and mobile phone
- Use of the smart phone for outdoor location-based services:

Find my friends feature of iOS developed by Apple, sharing of current location with other users

Allowing other user to view their current location on Google Maps

Use of such services also indoors

Pedestrian Indoor Navigation with GPS

• Attenuation of GPS signals by different materials:

Material	Attenuation in L1		
	[dB]	Factor	
Drywall	1	0.8	
Plywood	1-3	0.8 – 0.5	
Glass	1-4	0.8 - 0.4	
Toned glass	10	0.1	
Timber	2 – 9	0.6 - 0.1	
Iron	2 – 11	0.6 - 0.08	
Brick	5 – 31	0.3 - 0.001	
Concrete	12 -43	0.06- 0.00005	
Armored concrete	29 – 33	0.001 - 0.0005	

- GPS signals 20 to 30 dB weaker indoor than outdoor
- Navigation not possible

Pedestrian Indoor Navigation with A-GPS

- Obtaining satellite data via cellular network
- Indoor positioning partly possible but almost no navigation

Session 2: Ubiquitous Navigation, 3/12/2012

We are nanigation!

Pedestrian Indoor Navigation with Inertial Sensors

- Integrated MEMS (microelectro mechanical system) today in every smartphone
- Mostly accelerometer to extend user interaction with device; additonally magnetometer and gyroscopes

Draws: Poor measurements and integrating error

We are natigation:

P2P Filtering Approach

 Combination of inertial navigation using integrated MEMS and peer-to-peer filtering algorithm

Obtaining a better position solution for both peers

We are navigation

Position estimation in deep-indoors

 Based on the last known GPS-position performing dead reckoning:

$$x_n = x_{n-1} + l \cdot \sin \theta$$
$$y_n = y_{n-1} + l \cdot \cos \theta$$

- Step detection and step length estimation based on accelerometer measurements
- Heading estimation based either on magnetometers or change of gyroscope based on the last known heading

We are navigation

Exchange of Position Data

- Via wireless ad-hoc networks:
 - Bluetooth
 - WLAN / WiFi direct
 - ZigBee
- Mutual filtering of own position with received position of another peer
- Filtering realized by extended Kalman filter algorithm using incoming position as additional noisy measurement

We are nanigation!

Demands on the P2P Kalman Filter

- Autonomous navigation using either GPS / A-GPS, a combination of inertial sensor and GPS or only inertial sensors
- Enabling navigation also in deep indoor
- No surveying of building in advance and no additional infrastructure needed
- Favoring local charge-free ad-hoc networks against regional costly server connections

Simulation Configuration for P2P filtering

• Simulation of an rectangular indoor area with reference position and varying amount of peers:

- Variation of several variables:
 - Measurement accuracy of sensors
 - Number of peers
 - Maximum distance to other peer

We are navigation.

Results of of P2P filtering approach

- Maximum distance to other peer 5m: Increasing position accuracy related to the number of peers
- Maximum distance to other peer 10m: Decreasing position accuracy

Maximum distance to other peer 5m

we are ranigation!

Maximum distance to other peer 10m

Peer-to-Peer network standards

Bluetooth	WiFi direct	ZigBee	
Bluetooth® IEEE 802.15.1	Wi-Fi CERTIFIED [™] makes it Wi-Fi. IEEE 802.11	ZigBee Alliance IEEE 802.15.4	
Founded 1998 as Special Interest Group by five companies	Founded 1999 as consortium of more than 300 companies	Founded 2002 as an open non-profit association	
Working in the 2.4 GHz ISM frequency band	Working in the 2.4 GHz ISM and the 5 GHz frequency band	Working in the 2.4 GHz ISM frequency band	
Establishment of Piconets (~5m) or scatternets	Establishement of IBSS with a size of 100 m	Establishment of star- topology or peer-to-peer topology networks (~8m)	

we are nanigation!

Demands on the network protocol

	Bluetooth	WiFi direct	ZigBee
Large Acceptance	•	e	
Small transmission area (~5m)	•		•
Fast network establishment	•	•	•
No user interaction required		?	?
Estimating distance to other peer		?	?

Summary

- Increasing position accuracy by enabling peer-topeer filtering
- Only possible when distance to other peers kept below a certain threshold
- Two main demands on peer-to-peer networking:
 - Easy way to estimate the distance between two peers
 - Avoiding user interaction and enabling security protocol to hide position information of other users

We are nanigation

 Future work: Implementation of a prototype and improving of dead reckoning algorithm

