

PNT Assurance Standards for GNSS Receivers Used in Critical Applications

Brent Disselkoen, Dr. Gary A. McGraw Rockwell Collins

ICG-8 2013 Dubai, UAE 9-14 Nov, 2013

© Copyright 2013 Rockwell Collins, Inc. All rights reserved.

Rockwell Collins

Overview

- The lack of hardware and software Position, Navigation, ant Time (PNT) Assurance Standards for Global Navigation Satellite System (GNSS) receivers increases operational risks in critical applications
- Critical applications include
 - First responders
 - Law enforcement
 - Critical infrastructure
 - Autonomous vehicle navigation
- Key risk areas include
 - Susceptibility to spoofing and interference
 - Cyber threats
 - Long-term product support and availability

PNT Assurance Standards will help ensure performance and availability for critical applications

Rockwell Collins

Standards Adoption

- Historically the commercial aircraft industry has been the most proactive in developing standards for using open service GPS for flight critical applications
 - DO-229 RAIM FDE(Receiver Autonomous Integrity Monitoring, Fault Detection and Exclusion)
 - RTCA/DO-254 Hardware Design Assurance
 - RTCA/DO-178B Software Design Assurance
- This presentation proposes adopting PNT Assurance Standards for a Robust Open Service (ROS) GNSS receiver
 - Leveraging commercial aircraft industry standards and practices
 - Addressing commercial receiver technology and applications

GNSS Environment

- Multi-Constellation GNSS promises
 - Improved accuracy
 - Multiple frequencies provide ionospheric delay compensation and redundancy
 - More satellites provide better solution geometry
 - Integrity
 - More satellites provide redundancy
 - Improved control segment monitoring and communications
 - Interference immunity
 - More robust signal structures
- These promises are at risk in critical applications if
 - Signal susceptibilities are not mitigated
 - Cyber protection is not in place
 - No protection against design faults is provided

Critical applications need PNT Assurance Standards to maximize benefit of multi-constellation GNSS

Open Service GNSS Receiver Classes

	Open Service Receiver Classes		
Feature	Consumer	Aviation GPS	High-grade COTS GNSS
Design Assurance	\$	×	\$
Security (Anti-Spoofing)	\$	Not presently required	Signal Checks
Integrity Monitoring	\$	*	«
Interference Mitigation	V DSP	Not presently required	V DSP
Rugged	«	Avionics Environment	~
Accuracy	V L1/SBAS, L10F	L1 /SBAS, migrating to L1/L5 GNSS	L1,L2, L1OF,L2OF <i>migrating</i> to GNSS
gital Signal Processing (e.g., frequenc	v notchina)	J G	Good 🛷 Marg

DSP = Digital Signal Processing (e.g., frequency notching)

Issues with Open Service GNSS in Critical Applications

- Lack of signal validation
 - Susceptible to interference/spoofing
 - Little or no signal integrity/authentication
- Lack of design assurance
 - Hardware and software designs could have hazardous faults
- Lack of cyber protection
 - Vulnerable to malware, viruses
- Lack of long term product support
 - COTS receiver market requires frequent software revisions & model changes
 - Limited obsolescence management
- Lack of standard interfaces & form factors
 - Industry accepted interface definitions are limited
 - Few standard form factors

Rockwell Collins Robust Open Service (ROS) GNSS Receiver Defined by PNT Assurance Standards

	Open Service Receiver Classes					
Feature	Consumer	Aviation GPS	High-grade COTS GNSS	Robust Open Service GNSS		
Design Assurance	\$	1	\$	«		
Security (Anti-Spoofing)	8	Not presently required	Signal Checks	Improved Signal Checks		
Integrity Monitoring	\$	✓ RAIM/FDE	«	RAIM/FDE		
Interference Mitigation	💉 DSP	Not presently required	V DSP	DSP, Antenna AJ interfaces		
Rugged	×	Avionics Environment	«	×		
Accuracy	V L1 GNSS, L10F	L1 /SBAS, migrating to L1/L5 GNSS	L1,L2, L10F,L20F migrating to GNSS	L1,L2, L10F,L20F migrating to GNSS		
DSP = Digital Signal Processing (e.g., frequency notching)						

Need for PNT Assurance Standards

- Critical applications are demanding a new class of receivers: Robust Open Service (ROS)
 - Address issues associated with low-end Consumer GNSS receivers
 - Add signal integrity to assure PNT performance
 - Protect against 'malware' in ASICs and software
- PNT Assurance Standards for ROS receivers do not exist today
 - No basis for assessing performance, or protection
 - No industry accepted definitions and criteria
 - No method for determining whether the receiver is trustworthy

PNT Assurance Standards Will Provide a Basis for Assessing Robustness

PNT Assurance Standards Development

PNT Assurance Standards should address:

- Integrity Monitoring
 - Recommend leveraging aviation standards for RAIM/FDE
- •Signal Authentication
 - No prior standards exist, especially for authentication between constellations
- •Interference Mitigation / Spectrum Compatibility
 - Few prior standards exist, especially for intentional interferers
- Hardware Design Assurance
 - Recommend leveraging RTCA standards for hardware
- •Software Design Assurance
 - Recommend leveraging RTCA standards for software
- •Exportability
 - Need standards that are widely accepted internationally
- Interface definitions
 - Need standards that ease integration and encourage multiple vendors
- Form factors
 - Need standards that support diverse applications and encourage multiple vendors
- Certification
 - Recommend leveraging avionics certification standards

Summary

- There is a strong need for PNT Assurance Standards for Critical Applications
 - Not available in low-end consumer GNSS receivers
 - Critical Applications need a method to procure Robust Open Service (ROS) GNSS receivers
- Key Challenges
 - Critical applications industry base is large, so agreement on standards will take time
 - Policies in some countries will preclude trusting designs from other countries
 - Cost for complying to new PNT Assurance Standards could be prohibitive for some vendors
- Recommendations
 - Start with civil aviation standards
 - Define different categories of ROS receivers to address new market space