

GLONASS Policy, Status and Evolution

Denis Lyskov Deputy Head Russian Federal Space Agency (Roscosmos)

Eighth Meeting of the International Committee on GNSS Dubai, UAE 10 November 2013

Contents

- GLONASS Government Policy
- GLONASS Program 2012-2020
- GLONASS Constellation Status
- Recent Events and Short-term Sustainment
- Modernization Plan
- SDCM
- Global Precise Positioning System
- International Cooperation
- Summary

Government Policy

The Presidential Decree № 638 of May, 17, 2007

"On Use of GLONASS (Global Navigation Satellite System) for the Benefit of Social and Economic Development of the Russian Federation"

- GLONASS civil services are free and unlimited globally
- GLONASS is used as a basis for the National PNT System
- GLONASS Federal Program approved and adopted in March 2012 to support implementation of the National PNT Policy
 - Budget for 9 years secured
 - Contracts awarded

Federal GLONASS Program is a basis for Russian Policy in PNT

3

GLONASS Federal Program Goals

- Improving system performance in terms of accuracy and integrity
- Ensuring guaranteed positioning, navigation and timing solutions in restricted visibility, interference and jamming conditions
- Enhancing current application efficiency and broadening application domains

Key Quality Indicator of Program – guaranteed provision of announced GLONASS performance characteristics

Performance Improvement Plan

Four-fold accuracy improvement •••

by means of

- ground control segment modernization
- introduction of new onboard atomic ۲ frequency standards (2 CAFs + 2 RAFs)
- introduction of advanced satellite control and command, orbit and clock determination technologies based on crosslinks in RF and optical bands

synchronization of GLONASS Time Scale with UTC(SU) at less than 2ns while keeping UTC(SU) long-term stability at 10⁻¹⁷

SIS User Positioning Accuracy, m

GLONASS Constellation Status (23/10/2013)

GLONASS constellation status, 23.10.2013

Total satellites in constellation	28 SC
Operational	24 SC
In commissioning phase	-
In maintenance	-
Spares	3 SC
In flight tests phase	1 SC

GLONASS Orbital Planes Status

6

Current values of PDOP over the Earth surface (mask elevation angle $\geq 5^{\circ}$)

The constellation provides global continuous navigation

Positioning Accuracy (23/10/2013)

SIS User Positioning Accuracy – 2.5 m globally, 2.4 m over Russia (RMS)

Latest Launches and Short-term Sustainment

- 1 Glonass-M #47 launched 26 April 2013
- 3 Glonass-M lost 2 July 2013
- 2 Glonass-M (#51, #52) are in storage
- 3 Glonass-M (##53-55) <u>under manufacturing</u>
- Launches by Soyuz or Proton will be determined by operational necessity
- 1 Glonass-K in ground storage to be launched in the 2nd half of 2014

Glonass-M #47 launch

Launch schedule restructured to make up for the loss of satellites

GLONASS Architecture

Ground-based Augmentations

- Regional and local differential systems for transport, geodesy

- Assisted systems
- Pseudolites

GLONASS MEO Space Complex (incl. Ground Control)

Supporting Systems

UTC (SU), Earth Rotation Model and parameters, reference systems, maps, precise orbits and clocks

Space-based Augmentations

- SDCM (SBAS)

- Global Precise Point Positioning System
- Regional Navigation System
 (GEO and HEO based) under
 feasibility study

Special User Capabilities

Civil User Capabilities (including commercial)

Integrated user equipment (communication, inertial sensors and other sources of navigation information)

GLONASS Signal Implementation Plan

	Satellite	FDMA Signals		CDMA Signals		
		L1	L2	L1	L2	L3
	Glonass-M	L1OF L1SF	L2OF L2SF	-	-	L3OC (2014+)
	Glonass-K1	L1OF L1SF	L2OF L2SF			L3OC
	Glonass-K2	L1OF L1SF	L2OF L2SF	L1OC L1SC	L2OC L2SC	L3OC

L3OC ICD to be finalized by the end of 2013

System of Differential Correction and Monitoring (SDCM)

Objectives

•SBAS L1 full coverage over Russian territory by 2016 •SBAS L1 dual coverage and L5 service in the central part of Russia by 2018 SDCM SBAS service certification for LPV-200 by 2019 •Precise point positioning service by signals from GEO in L1/L3 GLONASS bands by 2020

System Architecture

 \checkmark 3 L1 GEO ✓ 1 L1/L5 GEO ✓ SiSnet server ✓ 46 stations in Russia

RIMS network

✓ up to 8 stations abroad

Processing Facilities ✓ Main (Moscow)

✓ 2 Regional

Constellation Status

•Luch-5A launched at 16° W on 11 December 2011

- •Luch-5B launched at 167° E on 3 November 2012
- •Luch-5V to be launched at 95° E in QI 2014

Global Precise Positioning System Architecture

BROADCASTING FACILITY

SMA signal

SDCM signal

NTRIP

GLONASS

SDCM

Internet

Objectives:
Global Precise Point Positioning service (real time)
Precise Orbit and Clock generation (real-time and post-processed)

GNSS CONSTELLATION

DATA PROCESSING

- MEAGLICE/nter
- Back-Up Center

GLOBAL MONITORING NETWORK

Participation in and contribution to ICG

- Participation in yearly ICG Meetings (since 2006)
- Hosting the ICG-4 Meeting in
 Saint-Petersburg in September
 2009
- Plans to host UN Workshop on the Applications of GNSS in May 2014 in Krasnoyarsk

Plans to host ICG- in 2016

Russia –active participant of ICG and its working groups

Russia co-chairs the ICG Working Group A on Compatibility and Interoperability

Bilateral Cooperation

Ø

USA

- 9 June 2012 Renewed Statement of Cooperation between GLONASS and GPS
- Resuming activities of the Working Group on GPS-GLONASS Cooperation

EU

- Consultations on Agreement on Cooperation in Satellite Navigation
- May 2013 EC-Roscosmos bilateral discussions finalizing Joint Statement on Russia – EU Cooperation in GNSS

China

- Russia-China Working Group on Space Cooperation
- Including GNSS Signal Monitoring in the Space Cooperation Program for 2013-2017
- Discussion of monitoring stations deployment on mutual basis

- GLONASS Program is among priorities of the Russian Government policy
- GLONASS open service is free for all users
- GLONASS Program (2002-2011) completed, goal achieved
 - Performance is comparable with GPS
 - Full constellation (24 sats) deployed
- New GLONASS Program (2012 2020) approved 3 March 2012
 - Government commitments for major performance characteristics
 - GLONASS sustainment, development, use
- GLONASS will continue
 - Keep the GLONASS traditional frequency bands
 - Transmit existing FDMA signals
 - Introduce new CDMA signals
 - International cooperation aims at making GLONASS one of the essential elements of the international GNSS infrastructure for worldwide user benefits

Thank you for your attention!

Denis Lyskov Deputy Head Russian Federal Space Agency (Roscosmos)