Keio University

ICG WG-B Application SG Meeting

Emergency Services using Global Navigation Satellite Systems

Naohiko Kohtake Ph.D., PMP Associate Professor, Keio University, Japan mailto:kohtake@sdm.keio.ac.jp http://www.sdm.keio.ac.jp/en/faculty/kohtake_n.html

Background & Motivation

Problem - Damage with Area-based Alert Message

Difficulties of Providing Personalized Alert Message

- Difficulties of maintaining a communication network
- Difficulties of sending alert message appropriate to the region
 - o Promptness
 - o Reliability
 - o Availability
 - Reachability

RedRescue Project

"Real-time Disaster Response using Location Data and Wide-area Small-capacity Data"

Research Approach

From Requirement Definition to Practical Experiments

9

Observations/Interviews	Workshops (Scenario Graph, CVCA,)	Simulations	Rapid Prototyping	Practical Experiments		
Project Meeting Brainstorm Brainstorm User Analysis Scenario Graph Pugh Selection CVCA Stakeholder Analysis CVCA						
Observation Disaster Site Investigation	Interviews Rapic Prototyp Cocal Evernment nterviews	ent 1 Experiment 2				

Experimental Test with QZSS/GPS Satellites

Experimental Test with QZSS/GPS Satellites

13

Why GNSS Satellite?

- GNSS Satellite provide world wide coverage.
- GNSS are the most popular "satellite communication" means.
 - 80% of Mobile Phone have a GPS chip (<1\$).
- Sufficient transmission bandwidth available to accommodate Alert Messages.

Indoor Positioning and Emergency Services

Our Lives: Indoor vs. Outdoor

Most people spend more that 80% life time indoor
 living, working, shopping, eating, and sleeping ...

http://www.tokyometro.jp/station/shibuya/yardmap/index.html

IMES Project

"Indoor MEssaging System"

GPS World Magazine, May 1, 2011

 Dinesh Manandhar, et.al., "Japan's Indoor Messaging System: IMES", GPS World, May 1, 2011

IMES: Indoor Messaging System

A basic idea of IMES is

 originated from the framework of the Japanese positioning satellite system, Quasi Zenith Satellite System

IMES transmitter can

- o transmit interoperative signal with L1C/A from GPS/QZSS
 - The same GPS receiver can acquire signals from satellites as well as indoor transmitters without serious modifications on existing receiver.
- o send its position data in three dimensions directly
 - No pseudo range measurement and time synchronization

Main target is

- o GPS mobile phone receiver
 - Number of mobile phone in the world is 3.3 billion in 2007.

RF Properties: GPS and IMES

 Interoperative signal with L1C/A from GPS/QZSS for minimizing receivers' modifications

	ltem	GPS	IMES
Í	RF Center Frequency	1575.42 MHz	1575.42+/-0.0082 MHz
	PRN Code	1 - 32	173 - 182
	PRN Code Length	1ms	1ms
	PRN Code Rate	1.023 MHz	1.023 MHz
	Navigation Message Rate	50bps	50bps
	Modulation	BPSK	BPSK
	Polarization	RHCP	RHCP

IMES Transmitters in Rise Buildings

RF Properties: QZSS and IMES

		Frequency Notes	Frequency Notes	
	L1-C/A L1C	1575.42MHz	Complete compatibility and interoperability with existing and future	
	L2C L5	1227.6MHz 1176.45MHz	 Differential Correction data, Integrity flag, Ionospheric correction Almanac & Health for other GNSS SVs 	
	L1-SAIF	1575.42MHz	 Compatibility with GPS-SBAS 	
	LEX	1278.75MHz	 Experimental Signal with higher data rate message (2Kbps) Compatibility & interoperability with Galileo E6 signal 	
	IMES	1575.42MHz		

Conclusion

Difficulties of Providing Personalized Alert Message

• Maintaining a communication network

o Sending alert message appropriate to the region

Alert Message Personalized with QZSS L1-SAIF

- o GNSS are the most popular "satellite communication" means.
- Sufficient transmission bandwidth available to accommodate Alert Messages.

Indoor and Outdoor Seamless Alert Message O QZSS L1-SAIF and IMES (Indoor Messaging System)