

International Committee on Global Navigation Satellite Systems

GNSS Vulnerability Analysis and Monitoring

Hongliang XU (Email: xhl@sjtu.edu.cn)

C4 T4 3:15

- GNSS applications:
 - Military
 - Power grid
 - Telecommunication
 - Transportation
 - Mapping & Surveying
 - Agriculture
 - Electronic financial system
 - Location Based Service
 - Other PNT services

- A measure to:
 - Predict
 - Evaluate
 - Monitor

GNSS service impairment

- Research funded by Chinese National 863
 Program
- Definition:
 - The ability to provide a normal service quality to users under diverse kinds of interference effects.

Vulnerability factors

- Satellite malfunction and failure;
- Interferences in the inter-satellite links
- Interferences in the satellite-ground links;
- The atmospheric anomaly (ionosphere/troposphere);
- Electromagnetic interferences ;
- Multipath effects;
- Terminal failures;
- Etc.

Research

- The interference factors
- Influence mechanism of GNSS vulnerability
- Design and Development
 - A platform for GNSS vulnerability simulation, verification and mitigation
- Test and Verification
 - Detection technologies
 - Mitigation technologies
- Solutions
 - Detect vulnerabilities
 - Provide countermeasures

Signal-In-Space Environment Simulation Subsystem

Signal Processing And Quality Monitoring Subsystem

Vulnerability Assessment & Verification Subsystem & Vulnerability Simulation In Space Segment

Interface

Layout of the Equipment

RF switching and overlay module

Internal logic diagram of RF switching and overlay module

Constellation vulnerability simulation

- Simulation of Inter Satellite Link
- SAIM

Inter Satellite Link Simulation

Simulation of Constellation Vulnerability

SAIM Analysis

Orbit Error Residual Orbit error residual

Minimal Detectable Bias

Position Error

Pseudrange coarse error

Satellite Autonomous Integrity Monitoring

	Broadcast ephemeris	IGS product Ultra-Rapid (predicted half)	SBAS(WAAS)	GDGPS (JPL 2010)	Proposed method
Origins of Measurements	Monitoring Stations	Ground reference stations	Ground reference stations	Ground reference stations	Inter-satellite ranging
Accuracy (orbit)	~100cm	~5cm	>0.75m (UDRE)	<20 cm RMS	~20cm RMS (radial) ~50cm RMS (otherwise)
Accuracy (clock)	~150 cm RMS 75 cm SDev	~90cm RMS ~45cm SDev	-	<20 cm RMS	~20cm RMS
Coverage	Global	Global	Regional	Global	Global
Update rate	4~6h	6h		1Hz	15min
Sample interval	daily	15 min		30s (orbit) / 1s (clock)	15 min
Latency	Real time	Real time	<15 seconds	4-6 seconds	few minutes
Accessibility	broadcast	Internet	SBAS GEO satellites	Network / GEO sat. (TDRSS)	broadcast
Receiver compatibility	Y	N	Y	N	Y (minor F/W update)

- GNSS interference and anti-interference technology
 - Aims
 - To provide spoofing and jamming signal simulators based on self-developed pseudolite technology.
 - To evaluate the interference effects on GNSS software receiver
 - To develop anti-spoofing and anti-jamming technologies based on self-developed software GNSS receiver

Jamming Signal Simulator:

the jamming interference on the bands of L1/L2/L5/E5 could be generated and other interference could be realized on the L5 jamming device.

Obstruction spectrogram of single-frequency interference produced by the jamming device

Wide-band jamming

Narrow-band jamming

- Spoofing signal simulator
 - generate spoofing signal in GPS L1 and BeiDou B1 bands
 - generate at most 8 fake GNSS signals simultaneously
 - Output power be adjusted through -130dBm to 0dBm
 - The navigation message can be modified or added arbitrarily

The spoofing interference control center

The ublox receiver is cheated and give a wrong navigation result

The spectrum of 8 GNSS spoofing signals

- The anti-interference technology
 - Analyze the influences of spoofing interference on the PLL, DLL and the received signal power.
 - Analyze the influences of jamming interference on the AGC module.
 - Simulate several antiinterference technology
 - LMS based adaptive time domain filter
 - Self-adaptive spatial domain filter anti-interference technology
 - Array-antenna technology

adaptive spatial domain filter

adaptive time domain filter

Multipath Simulation

The phase error code and carrier phase error were caused by the multipath signal, and the spectrum diagram of the single frequency interference signal produced by the GPS L1 jamming device .

The normalized discriminator output in different code delay

GNSS Signal-In-Space Quality Monitoring

- 4-Constellation CORS
 - Civil applications
 - Scientific research
 - Raw binary data
 - Differential correction messages

GNSS Signal-In-Space Quality Monitoring

Receivers	GNSS signal	
Leica GRX1200+	GPS/GLONA SS	
Unicore UR240	GPS/BeiDou	
Sinan Receiver	GPS/BeiDou	
FLEXPAK-6	GPS/Galileo	
(NovAtel)	/GLONASS	

Antennas	signal
Leica	GPS/ Glonass
NovAtel	GPS/BD

GNSS Signal-In-Space Quality Monitoring

- BeiDou/GPS reference station network
 - Containing 4 stations:
 - SJTU Station
 - SN Station
 - DG Station
 - XHL Station
 - NRS-EagleNet software
 - Processing data
 - Monitoring errors
 - Managing users
 - Achieving RTK calculation.

HMI of NRS-EagleNet

GVTR and Vulnerability Monitoring

- GVTR (will) provides a complete set of theories and research platform
- GVTR can be used to predict and evaluate Vulnerability issues and influences
- GVTR can be used as a full functional Vulnerability monitoring station
- Subsets of GVTR can be deployed in many areas

Deployment of GNSS Vulnerability Monitoring

Central Station

- Diameter: 3.2m
- Gain: 31dB@L band(1.1~1.7GHz)
- Directivity: 5.5deg (3dB Width) @1.20
- □ NT: <120k

Deployment of GNSS Vulnerability Monitoring

Deployment of GNSS Vu Monitoring

- Crowd sourcing monitoring
 - Smart phones
 - Vehicles: local differential data
 - Base Stations

Thanks for your attention!