CanSat & Rocket Experiment('99~)

UNITEC-1 '10 Venus

Micro/Nano-satellite Activities by Japanese Universities and Vision towards International Contribution

Shinichi Nakasuka and Rei Kawashima University of Tokyo and UNISEC

Nano-JASMINE '13

Contents

- Significance of micro/nano-satellite development
- Japanese universities' history of micro/nano/picosatellite development and recent stepping-up from education to practical use
- Governmental "Hodoyoshi" program for micro/nano-satellite development and utilizations
- Future vision: How Japan can contribute to the other nations in this fields: education, capacity building, and collaborative missions, etc.

Emerge of Nano/pico-Satellites in Japan

Success of CubeSat(1kg)by Univ. Tokyo and Titech (2003.6.30)

- University level budget (30K\$)
- Development within 2 years
- Surviving in space for >8 years
- Ground operations, frequency acquisitions, launch opportunity search processed by ourselves

1~50kg (Micro/Nano-sat): Starting from education but higher level satellites appears

Significances of Micro/Nano/Pico-Satellite Projects

• Initial phase contributions: Education

- Practical Training of Whole Cycle of Space Project
- <u>Feedbacks from the real world</u> to evaluate design, test, etc.
- Learning from failures (while project cost is small)
- Training for project management
- International cooperation, negotiation, mutual understanding
 - Also contribute to other technology areas !

• Create a new paradigm of space development and utilizations with low cost and quick development

- Will introduce new players(individual, company, local government, research institute, etc.) seeking for their own use
- Will create novel ways of space utilizations
- Will lead to participations of more nations

ARLISS (A Rocket Launch for International Student Satellites)

- Annual suborbital launch experiment -
- ARLISS 1999: Sept. 11 (Japan:2, USA:2)
 - Univ.of Tokyo, Titech, Arizona State, etc.
- ARLISS 2000: July 28-29 (Japan:4, USA:3)
- ARLISS 2001: August 24-25 (Japan:5, USA:2)
- ARLISS 2002: August 2-3 (Japan:6, USA:3)
- ARLISS 2003: Sept.26-27 (Japan:6, USA:3)
- ARLISS 2004: Sept.24-25 (Japan:6, USA:3)
- ARLISS 2005: Sept.21-23 (Japan:7, USA:3)
- ARLISS 2006 Sept.20-22 (Japan:8 USA:3 Europe:1)
- ARLISS 2007 Sept.12-15 (Japan:10 USA:3 Korea:1)
- ARLISS 2008 Sept.15-20: 10th Memorial ARLISS !
- ARLISS 2009 Sept.15-19 (Japan:12 USA:3 Korea:1)
- ARLISS 2010 Sept.13-17 (Japan:13 USA:2 Korea:1)
- ARLISS 2011 Sept.12-16 (Japan:14 USA:2 Korea:1)
- ARLISS 2012 Sept.10-14

CubeSat "XI-IV (Sai Four)"

<u>Mission</u>: Pico-bus technology demonstration in space, Camera experiment <u>Developer</u>: University of Tokyo <u>Launch</u>: ROCKOT (June 30, 2003) in Multiple Payload Piggyback Launch

Size	10x10x10[cm] CubeSat
Weight	1 [kg]
Attitude control	Passive stabilization with
	permanent magnet and damper
OBC	PIC16F877 x 3
Communication	VHF/UHF (max 1200bps)
	amateur frequency band
Power	Si solar cells for 1.1 W
Camera	640 x 480 CMOS
Mission life	more than 8 years

Captured Earth Images and Distribution to Mobile Phones

CubeSat "XI-V (Sai Five)"

<u>Mission</u>: CIGS solar cell demonstration, Advanced camera experiment <u>Developer</u>: University of Tokyo <u>Launch</u>: COSMOS (October 27, 2005) deployed from "SSETI-EXPRESS"

Size	10x10x10[cm] CubeSat	
Weight	1 [kg]	
Attitude control	Passive stabilization with	
	permanent magnet and damper	
OBC	PIC16F877 x 3	
Communication	VHF/UHF (max 1200bps)	
	amateur frequency band	
Power	Si, GaAs, CIGS cells	
Camera	640 x 480 CMOS	
Mission life	> 5 years	

Captured Earth Images

PRISM "Hitomi"

Antennae

<u>Mission</u>: Earth Remote Sensing (20 m GSD, RGB) with Deployable Boom <u>Developer</u>: University of Tokyo

Launch: H-IIA (Jan 23, 2009) Piggyback with GOSAT (CO₂ monitoring sat)

		REAL CONTRACTOR		
Size	20x20x40[cm] in rocket			<u>A</u>
	20x20x80[cm] in space		Lens	
Weight	8.5 [kg]			<u>CMOS</u>
Attitude control	3-axis stabilization with			• /
	Sun, Magnet sensor, MEMS gyro magnetic torquers			
OBC	SH2, H8 x 2, PIC x 2		1	S. S.
Communication	VHF/UHF (max 9600bps)	EI	vible telescone	- KC
Mission life	> 2.5 years	<u>, 1 K</u>		

Mexico Seashore

US Desert

Kita-Kyushu (Japan)

Solar cell panels

Wide Angle Camera

Nano-JASMINE

Mission: Astrometry (Getting precise 3D map of stars and their movements) <u>Developer</u>: University of Tokyo, National Astronomical Observatory of Japan, Shinshu University, Kyoto University

Launch: Cyclone-4 (planned within 2013) from Alcantara Launch Site

Size	50 [cm-cubic]
Weight	33 [kg]
Attitude control	3-axis stabilization with
	Star, Sun, Magnet sensor, FOG,
	RW, Magnetic torquers
OBC	FPGA
Communication	S-band 100 [kbps]
Mission life	2 [year]

Special features:

-Attitude Stability 0.8 arcsec for 8.8 sec -Thermal Stability < 0.1K (at -50 degree) -Map Accuracy Compatible with "Hipparcos" Satellite ('89) -Telescope two CCDs with TDI

Satellites made by Japanese Universities

Governmental "First" Program "Hodoyoshi-project" (2010-2015)

- Reliability concept for micro/nano/pico-satellites
 - "So-so and not expensive (Hodoyoshi)" reliability (compromise between cost (workload) vs. reliability)
- Component technology development
 - Should solve "size and power problem"
- Development process innovation
 - Software architecture
 - Ground test, etc.
- Create novel applications and use communities
 - Non-government users as individuals, companies, local government, research institute can seek for their interest

Missions Creation for Hodoyoshi Program

- Low-cost and small size realize satellite constellation
 - More frequent (ex. semi-daily) observation of the same areas
- Formation flight
 - Many scientific applications such as interferometer, multi-site observation, stereo vision
- "Personal Satellite" "My Satellite"
 - Novel ways of utilization including entertainment, education, contents, etc
 - Just like "PC and internet" innovation which has changed the world

Stereo Vision

[&]quot;Furoshiki" satellite

Satellite Development Plan (4 satellites in 4 years)

#1:6.8m GSD 4 band remote sensing

 Data is open to private users so that they can test their utilizations

Dnepr launch in 12/2012

(developed by AXELSPACE)

#2: Foreign space science mission

 – 5 Mission payloads will be onboard (from foreign research institutes)
 (developed by Tohoku University)

#3: Constellation of 2 satellites

- 5, 40, 200m GSD, rental space,

Store and forward missions

(developed by Univ. Tokyo and NESTRA)

Capacity Building Support Program
UNIFORM (UNiversity International FOrmation Mission)

- Each country develops one microsatellite (< 50kg)
 - To be operated in constellation manner
 - Standardization of bus/component
 - Training of satellite development is supported by Japanese Universities
 - Equipment cost partially supported by Japanese government (in negotiation)

Ground Station Network

 Low-cost GS is developed to realize one GS in each country (S/X-band)

Missions

- Common mission + individual mission
- Common mission will be determined by discussions within community

(Funded by MEXT, Japan)

Operation in constellation

Introduction to UNISEC University Space Engineering Consortium

- UNISEC is a non-profitable organization to facilitate and promote practical space development activities, such as designing, developing, manufacturing, and launching micro/nano satellites and hybrid rockets at university level.
- Established in 2002

- 57 laboratories/groups from 39 universities
- About 500 student members and 220 supporters

Vision 2020-100

By the end of 2020, let's create the world where university students can participate in practical space projects in more than 100 countries.

<Examples of programs>

- 1) CanSat Leader Training Program (CLTP)
- 2) Nano-Satellite Mission Idea Contest (MIC)
- 3) Nano-Satellite Symposium

Let's establish UNISEC-xxx (your country) Let's start "UNISEC-International" together!

1)CanSat Leader Training Program (CLTP)

CLTP was established in 2011 to contribute to capacity building in space technology and to improve teaching methods in space engineering education.

- A one month course gives training through whole cycle of CanSat development including sub-orbital launch experiments
- Participants are expected to teach their students CanSat program in their countries
- Aiming at "international CanSat education network"

http://www.cltp.info

CLTP Participants

CLTP1 (Wakayama Univ. in Feb-March, 2011)

12 participants from 10 countries, namely Algeria, Australia, Egypt, Guatemala, Mexico, Nigeria, Peru, Sri Lanka, Turkey, Vietnam.

CLTP2 (Nihon Univ. in Nov-Dec, 2011)

10 participants from 10 countries, namely Indonesia, Malaysia, Nigeria, Vietnam, Ghana, Peru, Singapore, Mongolia, Thailand, Turkey.

CLTP3 (Tokyo Metropolitan Univ. in July-August, 2012) 10 participants from 9 countries, namely Egypt, Nigeria, Namibia, Turkey, Lithuania, Mongolia, Israel, Philippines, Brazil 2) Mission Idea Contest (MIC)

for Micro/nano Satellite Utilization

- Requirement: Propose innovative
 - category1: mission idea and satellite design

- category 2: mission idea and business model using micro/nano satellite weighing less than 50kg.
- Regional coordinators: 33 regions
- 72 applications from 29 countries.
- Oct 10, 2012 Final Presentation

http://www.spacemic.net

3) UN/Japan Nano-Satellite Symposium

Under the Basic Space Technology Initiative (BSTI) of the United Nations Programme on Space Applications

NAGOYA, Japan

http://www.nanosat.jp/

Global network through Mission Idea Contest and CanSat Leader Training Program (MIC:33, CLTP: 21 countries) 38 countries in total

: MIC coordinator

Micro/nano-satellite and future

• Large educational effect not only for space, but also for many technological areas

 New paradigm of space development and utilization with low-cost and quick development

 International network through micro/nanosatellites