

DEFLECTING HAZARDOUS ASTEROIDS FROM COLLISION WITH THE EARTH BY USING SMALL ASTEROIDS

N. Eismont⁽¹⁾, M. Boyarsky⁽¹⁾, A. Ledkov⁽¹⁾, B.Shustov⁽²⁾, R. Nazirov⁽¹⁾, D. Dunham⁽³⁾ and K. Fedyaev⁽¹⁾ ⁽¹⁾Space Research Institute of Russian Academy of Science, ⁽²⁾Institute of Astronomy of Russian Academy of Science, ⁽³⁾KinetX,

The main idea

The main idea consists of targeting a very small asteroid to impact a larger dangerous one. The minimum size of this small asteroid is determined by the ability to detect it and to determine its orbit. The small object may have a diameter of about 10 -15 meters. Asteroids are selected from the near-Earth class that have a fly-by distance from Earth of the order of hundreds of thousands of kilometers. According to current estimates, the number of near Earth asteroids with such sizes is high enough. So there is a possibility to find the required small asteroid. Further, the possibility is evaluated of changing the small asteroid's orbit so that by application of a very limited delta-V impulse to the asteroid, the latter is transferred to a gravity assist maneuver (Earth swingby) that puts it on a collision course with a dangerous asteroid. It is obvious that in order to apply the required ΔV pulse it is necessary to install on the small asteroid an appropriate propulsion system with required propellant mass.

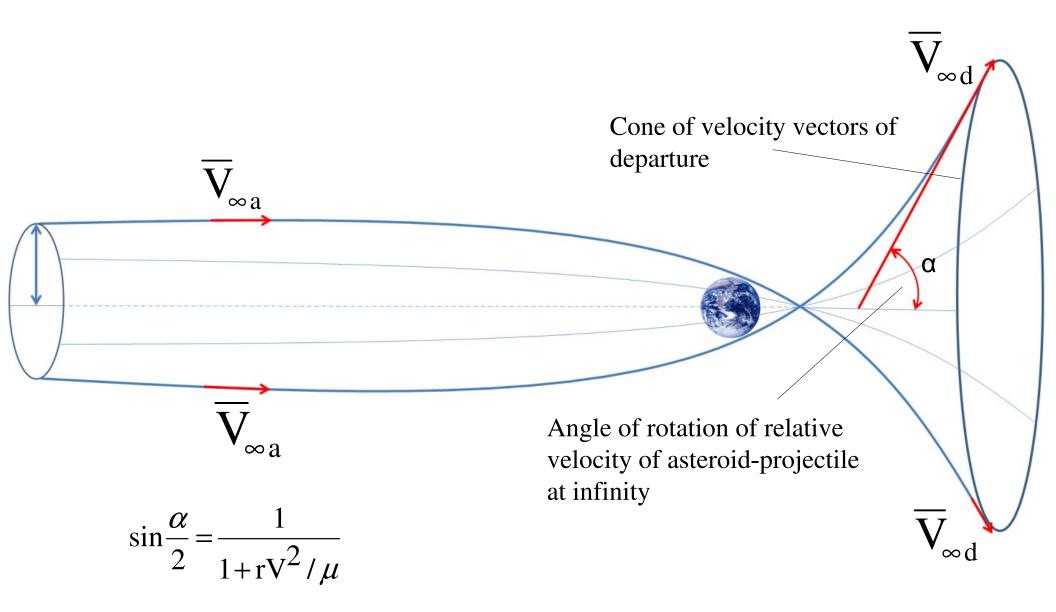
The main goal is to demonstrate that this concept is feasible.

The basic concept

IV. flight along trajectory to the Earth

III. applying to the asteroidprojectile the velocity pulse

VI. Collision with


dangerous asteroid

Apophis

I. Start of spacecraft from the Earth

V. Gravity assist maneuver **II. Landing and fixing the spacecraft on asteroid surface**

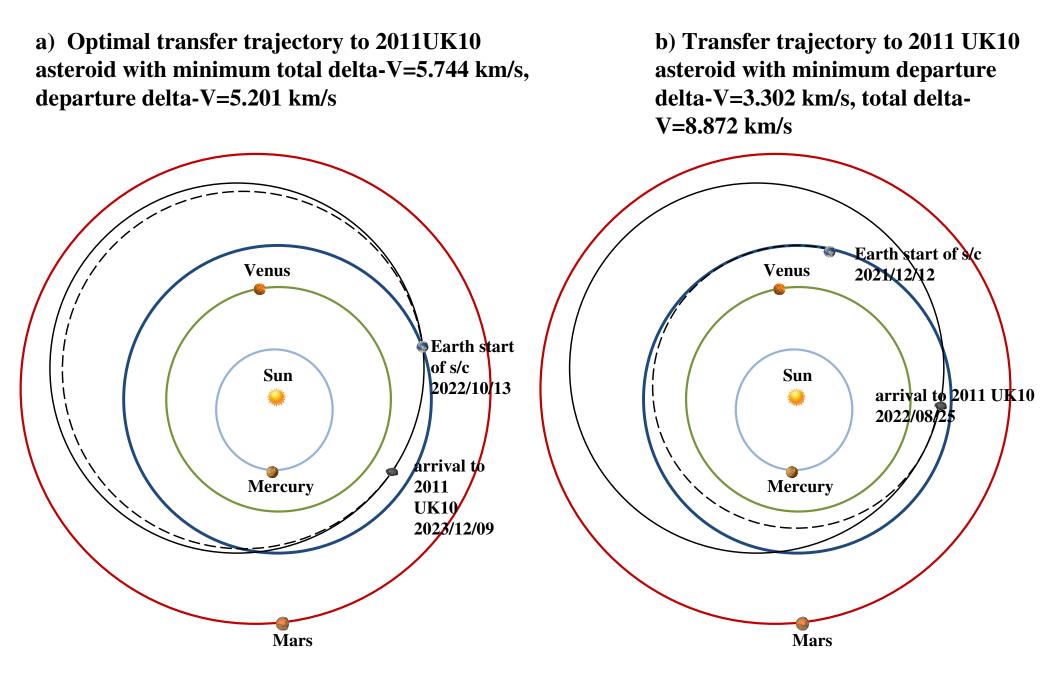
Cylinder of possible vectors of relative velocities at arrival and resulted after fly-by cone of velocity vectors of departure

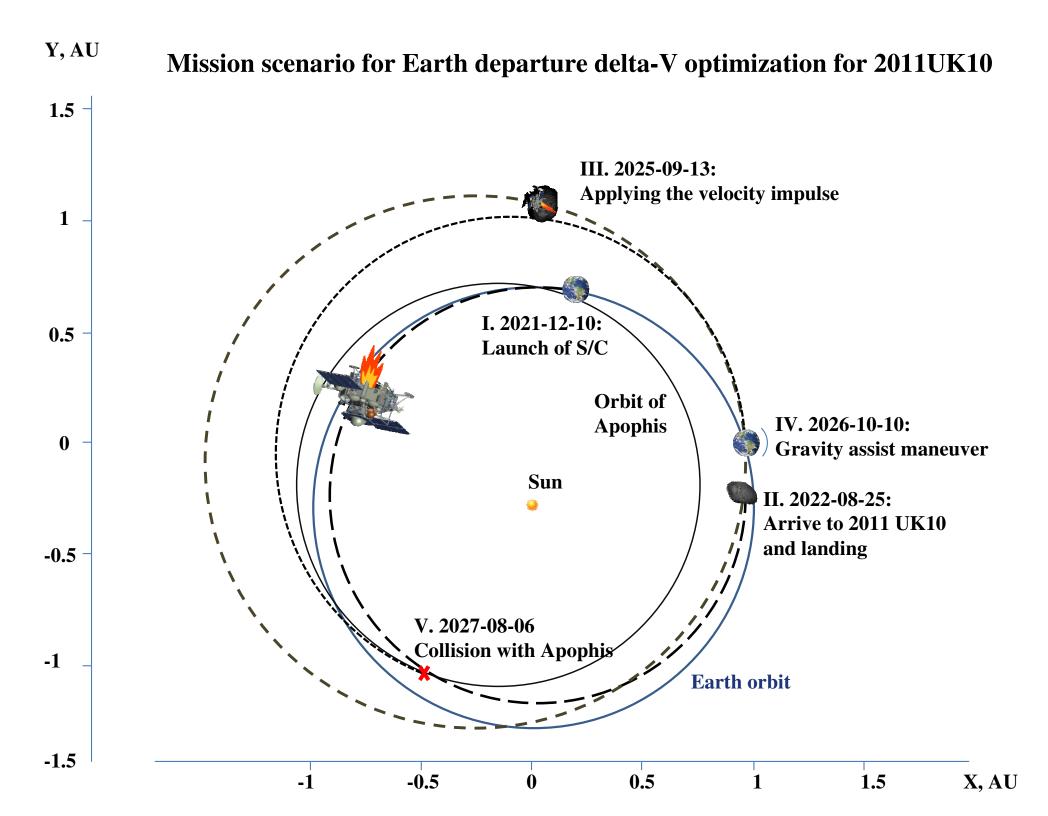
Results of candidate asteroids choose and orbits design

Asteroid	2006 XV4	2006 SU49	1997 XF11	2011UK10	1994 GV
Delta-V value, m/s	2.38	7.89	10.05	15.94	17.72
Perigee radius, km	16473.19	15873.40	42851.84	31912.94	7427.54
Velocity in perigee with respect to	9.61	5.03	14.08	8.98	13.37
Earth, km/s					
Angle of the relative to the Earth					
velocity turn, deg.	23.98	59.78	5.14	21.14	50.85
Date of maneuver execution	2029/03/17	2027/06/11	2027/04/27	2025/09/13	2028/09/12
Date of perigee reaching	2031/12/11	2029/01/23	2028/10/26	2026/10/10	2031/04/13
Date of collision of asteroid-projectile					
with Apophis	2034/04/08	2029/10/06	2030/08/06	2027/08/06	2031/12/24
Impact velocity with Apophis, km/s	15.3	4.9	11.0	2.3	14.1
Magnitude	24.87	19.54	16.9	24.91	27.46
Size of asteroid-projectile	25 ≈ 60 m	330 ≈ 750 m	1 ≈ 2 km	25 ≈ 60 m	8 ≈ 19 m
V ² at infinity after s/c launch from near	63.1283			47.182	50.6314
Earth orbit, km ² /s ²	(3.7*)	(0.36*)	(6.447*)	(1.488*)	(2.427*)
Delta-V of braking for landing S/C on	0.89			0.543	0.591
an asteroid, km/s	(9.7*)	(4.67*)	(7.89*)	(5.571*)	(7.328*)

*for departure delta-V optimization, Red corresponds total Delta-V optimization

Key orbital parameters for transfer mission of the spacecraft to asteroid-projectile


Criterion of optimization Crio=W1C3+W2 Δ Va


	Optimal time of	Optimal time of arrival	C ₃ ,	ΔV_a ,	Duration of	ΔV_s ,	ΔV_t ,
W ₂	departure from Earth	to 2011 UK10	km²/s²	km/s	transfer days	km/s	km/s
1	2021/12/10	2022/08/25	1.4879	5.5709	257.9243	3.302	8.873
2	2021/12/08	2022/08/21	2.023	5.2113	255.1062	3.326	8.537
6	2022/08/20	2023/08/02	6.99	3.4856	346.7858	3.537	7.033
12	2022/08/28	2023/08/08	8.1783	3.3644	345.7742	3.599	6.963
14	2022/09/21	2023/08/18	18.5637	2.5698	330.8983	4.047	6.617
14	2022/10/13	2023/12/10	46.9763	0.55489	422.8127	5.193	5.747
20	2022/10/13	2023/12/09	47.1824	0.54275	422.5234	5.201	5.744
	Optimal time of	Optimal time of arrival	C ₃ ,	ΔV_a ,	Duration of	ΔV_s ,	ΔV_t ,
W ₂	departure from Earth	to 1994 GV	km ² /s ²	km/s	transfer days	km/s	km/s
1	2027/04/17	2028/06/07	1.9758	7.3286	416.8176	3.324	10.653
2	2027/03/17	2028/04/22	2.4656	6.86	401.9748	3.346	10.206
6	2027/05/04	2028/05/17	8.3888	5.2059	378.4848	3.609	8.815
7.8	2027/05/04	2028/05/16	8.3904	5.2057	378.4952	3.609	8.815
10	2026/03/17	2028/03/21	30.1283	2.4271	734.6328	4.526	6.954
20	2025/12/03	2028/01/02	50.6314	0.5913	1056.6681	5.333	5.924
	Optimal time of	Optimal time of arrival	C ₃ ,	ΔV_a ,	Duration of	ΔV_s ,	ΔV_t ,
W ₂	departure from Earth	to 2006 XV4	km ² /s ²	km/s	transfer days	km/s	km/s
1	01/02/2027	10/03/2027	3.7398	9.7307	273.6634	3.40	13.13
10	12/14/2025	10/03/2027	34.5596	3.5816	658.0781	4.705	8.286
20	11/21/2023	03/28/2027	63.1283	0.89119	1222.5468	5.8	6.69


 $\Delta V = 10 \text{ m/s}$ R IV. flight along III. applying to the asteroidtrajectory to the Earth projectile the velocity pulse **Apophis** VI. Collision with dangerous asteroid Impact velocity = V = 2-14 km/s I. Start of spacecraft from the Earth II. Landing and fixing the V. Gravity assist spacecraft on asteroid surface maneuver $R_{\rm p}$ =7000 - 35000 km

 ΔV braking for landing S/C on an asteroid = 0.5 km/s

Asteroid 2011 UK 10

Resonance orbits as the basis for construction planetary defense system.

The proposed concept of using small asteroids to deflect the hazardous objects from the trajectory of collision with Earth may be developed further. The idea is to transfer small asteroids onto Earth resonance orbits, for example with period of one year, using described above method of gravity assist maneuver. Our preliminary studies have confirmed that it is possible to find 11 asteroids which are possible to transfer on such orbits by apply the delta-V not exceeding 20 m/s. Thus a system is constructed which allows sending asteroid-projectile to the hazardous object approximately each month during year

One year period resonance orbits

ID	ΔV_3	lal	lbl	lcl	φ deg	α	V _{smin}	V _{smax}	V _s	T ₃	T ₄
	m/s	km/sc	km/s	km/s		deg.	km/s	km/s	km/s		
2004 MN4	2.2	5.8	29.7	28.4	71.6	78.8	23.9	34.9	29.7	2028/11/13	2029/04/13
2012 TC4	5.6	6.6	29.8	33.9	123.0	71.0	26.3	36.2	29.8	2016/12/12	2017/10/12
2006 SU49	7.9	5.0	30.3	34.3	140.0	89.1	27.4	33.8	30.3	2027/06/11	2029/01/23
2011 AG5	9.9	9.5	30.2	34.4	108.0	46.6	27.0	39.0	30.2	2021/08/14	2023/02/04
1997 XF11	10.0	14.1	30.0	34.2	95.1	26.7	28.0	39.2	30.0	2027/04/27	2028/10/26
2011 ES4	11.0	7.7	29.5	30.8	92.0	59.8	23.3	36.5	29.5	2027/10/27	2028/09/01
2012 VE77	12.6	15.4	30.1	35.4	97.0	23.3	29.7	40.1	30.1	2030/01/05	2031/11/18
2010 VQ	14.0	4.6	29.8	27.3	53.4	95.5	26.6	33.8	29.8	2034/03/04	2034/10/08
2012 KP24	14.6	12.7	29.4	34.0	100.2	31.1	27.5	39.0	29.4	2021/08/12	2023/05/29
2011 UK10	15.9	7.5	29.8	32.5	104.3	62.2	24.8	37.1	29.8	2025/09/13	2026/10/10
2006 SR131	16.8	8.4	29.7	33.3	108.5	54.1	25.7	37.8	29.7	2016/08/06	2017/09/23
2012 PB20	18.8	4.0	30.2	30.9	97.4	103.7	26.2	33.9	30.2	2024/06/11	2025/02/11
2010 CA	19.3	14.6	29.4	32.8	90.2	25.2	26.7	38.0	29.4	2027/03/07	2028/08/06

 T_3 – date of velocity impulse applying to asteroid

 T_4 – date of gravity assist maneuver to transfer asteroid onto Earth resonance orbit

c - asteroid absolute velocity before gravity assist maneuver

b – Earth absolute velocity

a - asteroid velocity with respect to Earth

 V_s – asteroid velocity after gravity assist maneuver corresponding 1:1 resonance

V_{smin}-minimum reachable absolute velocity of asteroid

 V_{smax} – maximum reachable absolute velocity of asteroid

 α – maximum angle of relative asteroid velocity rotation by gravity assist maneuver

Conclusions

The described method of dangerous asteroids deflection from the trajectory of collision with the Earth as it was shown on the example of Apophis may be considered as doable. It was found that very small delta-V (2.38 m/s) may be required to transfer small asteroid to the trajectory, what includes gravity assist maneuver near Earth, followed by collision of this asteroid with the hazardous object like Apophis. Proposed method allows to change velocity of dangerous object by the value unachievable by any other contemporary technologies. For practical implementation of the proposed approach some further progress in broadening the catalogue of candidate asteroid-projectile is needed especially as it is related to small asteroids. Also additional studies are required for reaching lower demands for correction maneuver delta-Vs.

Construction the system consisting from resonance asteroids which periodically fly by the Earth to be ready targeted to hazardous sky object is shown to be doable.