Swiss Contributions to a Better Understanding of the Space Debris Environment

T. Schildknecht

Astronomical Institute, University of Bern (AIUB), Switzerland

47th Session of UNCOPUOS Scientific and Technical Subcommittee, Vienna, 8–19 February 2010

Outline

- 1. Why a Better Understanding
- 2. History of Swiss Space Debris Research
- 3. Scientific Highlights
- 4. International Collaboration
- 5. Summary

Astronomical Institute University of Bern

Why do we Need a Better Understanding?

- Knowledge regarding the space debris environment required to
 - Assess threads (e.g. risk to spacecraft)
 - Design protection measures (e.g. shields)
 - Devise efficient space debris mitigation measures enabling sustainable outer space activities
- Space debris research provides information on environment through
 - Extending the catalogues of "known" space objects towards smaller sizes (deterministic population)
 - → enable active collision avoidance (safety of operations)

Why do we Need a Better Understanding?

- Space debris research provides information on environment through (cont.)
 - Acquiring statistical orbit information on small-size objects in support of statistical environment models
 - \rightarrow statistical risk analysis (e.g. mission analysis, shielding, etc.)
 - \rightarrow input data for long-term evolution models
 - \rightarrow identification of debris sources
 - progenitors of debris clouds (breakup events)
 - disintegrations of spacecraft due to aging processes
 - Long-term monitoring of environment
 - \rightarrow identification of new sources
 - \rightarrow verification of evolution models

History of Swiss Space Debris Research

- Observation of artificial satellites at AIUB's Zimmerwald observatory since 45 years
- Essential contribution to the ESA space debris observation program trough
 - software development for the ESA space debris telescope
 - planning, data acquisition, processing, 1992-
 - observations programs (on behalf of ESA)
 - Geostationary Orbit Objects Survey, 1998–2005
 - Geostationary Transfer Orbit Survey, 1997–2004
 - Extension of Optical Observation Capabilities of the Zeiss 1m Telescope / Space Debris Optical Observations, 2001–2008
 - *MEO Surveys*, 2008–
 - Spectroscopic Measurements of GEO objects, 2008-

Space debris cataloguing and characterization with AIUB's sensors in Zimmerwald

47th Session of UNCOPUOS STC, Vienna, 8-19 February 2010

Key Scientific Results (several "firsts")

- Longest and most sensitive observations of the GEO/GTO regime
 - Discovery of small-sized (dm) debris
 only sensor with significant contribution for objects < 0.4m in IADC GEO campaigns
 - 10 years of continuous monitoring
 - → clusters of debris in orbital element space discovered, evolution studied
 - Input data for ESA MASTER environment model: introduction of "artificial" breakup events in order to model the observed clusters of debris in the 0.2 to 1m size range
- Discovery of "new" (i.e. previously unknown) population of high areato-mass (AMR) ratio objects
- First (and so far only) spectra of high area-to-mass (AMR) ratio objects

Small-Sized Fragments in GEO (example 2008 surveys)

Detections (Jan 2008 - Dec 2008)

AIUB

00

Slide

Contributing Swiss Sensors

Used for:

Faint objects, light curves, color photometry

"Routine", Continuous Operation

Astronomical Institute University of Bern

47th Session of UNCOPUOS STC, Vienna, 8-19 February 2010

Catalogue of Small-Size Space Debris

- Build-up and maintenance of orbit catalogue of decimeter-sized debris in GEO (AIUB)
- Why?
 - Density/collision risk lower than in LEO BUT:
 - No sinks \rightarrow population constantly grows
 - \rightarrow Mitigation of debris is important
- Need to know nature and sources of debris Requires:
 - Orbit catalogue
 - Constant monitoring due to perturbations by non-gravitational forces

- Discover new objects: Obs. From Tenerife (OGS, AIUB)
- Secure orbits: obs. from OGS, Zimmerwald (AIUB)
- Maintain orbits: obs. from OGS, Zimmerwald, international partners, International Scientific Optical observation Network (ISON), ...
 - Daily orbit maintenance at AIUB and Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences (KIAM)
 - \rightarrow Orbit catalogue of high-altitude space debris
- Provide predictions:
 - To other partners (CNES, JAXA, NASA, Roscosmos...)
 - ► → to investigate physical properties of objects

Astronomical Institute University of Bern

Discovery of High AMR Objects

- Unexpected, not modeled class of objects
- Mean motion suggests release in GEO
- Eccentricity/inclination builds up (solar radiation pressure)
- Source & process of generation unknown
- Difficult orbit maintenance in catalogue of orbits
 shows need of continuous monitoring, frequent follow-ups, and data exchange

- \rightarrow MLI?, solar cells?
- → break-up event?
- → aging effects?

Astronomical Institute University of Bern

47th Session of UNCOPUOS STC, Vienna, 8–19 February 2010

Characterization of Space Debris

Astronomical Institute University of Bern

47th Session of UNCOPUOS STC, Vienna, 8-19 February 2010

- Active participation in the Inter-Agency Space Coordination Committee (IADC) by
 - exchanging information on space debris research
 - organizing cooperative observation campaigns
 - providing measurements
 - providing orbit predictions
 - author is WG-1 "measurements" deputy chair
 - Fostering international collaboration trough bi- and multilateral scientific cooperation
 - partner of Int. Scientific Optical Network ISON
 - scientific collaboration with Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences (KIAM)
 - cooperative observations with ESA, BNSC, NASA, JAXA and other space agencies
 - operational support for ESA

Astronomical Institute University of Bern

Summary

20 years of Space Debris Research in Switzerland

- Optical survey techniques
 - Algorithms (detection, survey scenarios)
 - Software suite
- Observations
 - 10 years of space debris surveys at OGS for ESA
 - Operational, continuous, highly automated observation programs using the Zimmerwald sensors

Orbit Catalogues

- Orbit determination techniques/software
- Build-up and maintenance of space debris catalogue (GEO/GTO)
- International collaboration
- Physical Characterization
 - area-to-mass ratio from orbital evolution
 - sizes from photometry
 - shapes from light curves
 - materials from color photometry, spectra

Thank you for your attention!

Thomas Schildknecht

Astronomical Institute University of Bern (AIUB) Switzerland

thomas.schildknecht@aiub.unibe.ch

Astronomical Institute University of Bern

