

Study of the ion fluxes in the vicinity of Earth

S.A. VORONOV NRNU MEPhI

COPUOS Vienna, February 2010

SOLAR COSMIC RAYS

SOLAR ENERGETIC PARTICLE GENERATION (SEP) CORONAL MASS EJECTION (CME) GRADUAL SEP EVENTS IMPULSIVE SEP EVENTS

Gradual and impulsive SEP events

SEP events

Characteristics	Impulsive	Gradual	
Particles	electrons,	protons	
	³ He and heavy ions:	heavy ions:	
	H/He~10,	311./411. 0.005	
	³ He/ ⁴ He~1,	[°] He/ [°] He~0.005,	
	Fe/O~1	Fe/O~0.1	
Duration	Hours	Days	
Soft X-ray radiation	Impulsive	Long duration	
Coronal Mass	Usually	Available	
Fiection (CMF)	ahsent		
Ejection (CME)			
Frequency for	~1000	~ 20	
Solar maximum	per year	per year	
	1	MA	

"Gradual" SEP events: Mean Fe ion charge versus energy

- *S* spectral index of wave turbulence;
- T_a acceleration time;
- N plasma density.
- 1: S=5/3; $T_a=1.7-1.2s$; $N=5\times10^8$ cm⁻³
- **2:** S=5/3;Ta=1.7-1.2s; N=5×10⁹cm⁻³
- 1': $S=3;Ta=1-3.3s; N=5\times10^8 cm^{-3}$
- **2':** S=3;Ta=1-3.3s; N=5×10⁹cm⁻³

1000 Temperature: $T=1.26 \times 10^{6}$ K.

Experimental data: Oetliker et al. (1997); Luhn et al. (1984); Leske et al. (1995); Tylka et al. (1995).

"Impulsive" SEP events: Mean Fe ion charge versus energy

S - spectral index of wave turbulence;

- N plasma density.
- 1: S=1.5; $N=3\times10^8$ cm⁻³
- 2: S=1.5; N=6×10⁸ cm⁻³
- 3: S=1.5; N=1×10⁹ cm⁻³
- 4: S=2.5; N=8×10⁸ cm⁻³
- 5: S=2.5; $N=3\times10^9$ cm⁻³

Temperature: $T=1 \times 10^6$ K.

Kartavykh & Ostryakov, 1999

CR ion charge measurement: Ion charge analysers

COS MEPh

The measurement of ion charge at low energies (<5 MeV/n for Fe)

CR ion charge measurement: Geomagnetic separator of ion charge

The main ideas of geomagnetic filter technique (Proposed by Oetliker M., et al. 1997 for SAMPEX)

- Earth orbiting spacecraft detects ions inside the Earth's magnetic field.
- Cut-off latitude depends *linearly* on the ion rigidity.
 Rigidity for particles is mapped versus latitude and linear dependence coefficients are derived.
- The ion charge can be obtained knowing this dependence and measuring the ion energy and ion rigidity.

The experiments for the study of ion and isotope composition of Cosmic Rays

Instrument	Energy range, MeV/n	Elements	Geomfactor, cm²sr	Orbit parameters
MONICA	10 – 300	H – Ni	100	Circular, 670-830 km (inside geomagnetic field)
NINA, NINA-2	10-200	H - O	8	Circular, 835 km (inside geomagnetic field)
MAST(SAMPEX)	15 – 200	He – Ni	8 – 14	Circular, 600 km (inside geomagnetic field)
HILT(SAMPEX)	4 – 150	He – Ni	60	The same
SEPICA(ACE)	0.2 – 3	H – Fe	0.2	In L1 point
SIS(ACE)	10 – 100	He – Ni	40	In L1 point
CRIS(ACE)	20 – 500	Be – Ni	250	In L1 point

The project "MONICA" Monitor of cosmic ray nuclei and ions

COS MEPh

The mail goals of MONICA experiment

Measurement of ion charge states, as well as elemental, isotope composition and energy spectra of SEP fluxes from He to Ni in 10-300 MeV/n energy range for individual SEP events (including small impulsive SEP events).

- Measurement of ACR ion ionic charge and isotope composition, including elements and isotopes(sulfur, isotopes of oxygen and neon and others); measurement of ACR energy spectra.
- Measurement of GCR and ACR fluxes modulation with the purpose of study of conditions of particle propagation in heliosphere.

Study of CR penetration into Earth magnetosphere under conditions of its strong disturbances during the solarmagnetosphere events.

MONICA physical scheme

Layout of spectrometer

MONICA main physics characteristics: Mass resolution for oxygen

мФИ

MONICA main physics characteristics: Mass resolution for iron

Physics and technical characteristics of MONICA spectrometer

Geometry factor	100 cm ² sr	Outline dimensions	650×650×300 mm
Field of view	±45°		
Angular resolution	1°	Mass	60 kg
Energy range: H	H 7-70 MeV	Power consumption	70 W
Fe	20-290 MeV/n	Power supply voltage	27 V
Energy resolution	1%	Matter in aperture	Not more
Mass resolution: H	l 0.02 amu		then 0.05 g/cm ²
CNO	0.08 amu	Mass memory	1 Gbyte
Fe	0.2 amu		one per day and
Time resolution	50 ns	downloads	more
Dead time	<1 ms	frequency	

111

View of MONIKA spectrometer

MAN

Small Size Satellite

Orbit parameters, launcher, lifetime

- SSA orbit parameters were chosen to achieve MONICA scientific objectives. The required orbit parameters are:
- type near-Earth circular;
- altitude 600-800 km;
- type polar
- MONICA instrument should be pointed to zenith with accuracy better then ±0.5°. The satellite navigation systems should provide the accuracy of SSA position knowing of 1 km. The satellite axes orientation must be known with accuracy better then ±0.5°.
- The most probable launcher for MONICA is Soyuz rocket with Fregat acceleration module.
- The observations will be carried out continuously as monitoring mode. Duration of the mission is more than 3 years.

24 Solar sycle

THANK YOU

FOR YOUR ATTENTION

