

OVERVIEW ON 2010 SPACE DEBRIS ACTIVITIES IN FRANCE

F.ALBY

SUMMARY

- **■** Atmospheric reentries
- **End of life operations**
- **■** Collision risk monitoring
- **French Space Act**
- **■** Space debris measurements
- **Important meetings**

1-ATMOSPHERIC REENTRIES


■2 French registered objects reentered into the atmosphere in 2010:

Identification	Launch date	Description	Reentry date
2009-058-D	29 Oct 2009	Ariane 5 (V192) SYLDA	9 Sept 2010
2001-029-D	12 July 2001	Ariane 5 (V142) SYLDA	6 Oct 2010

2-END OF LIFE OPERATIONS (1/3)

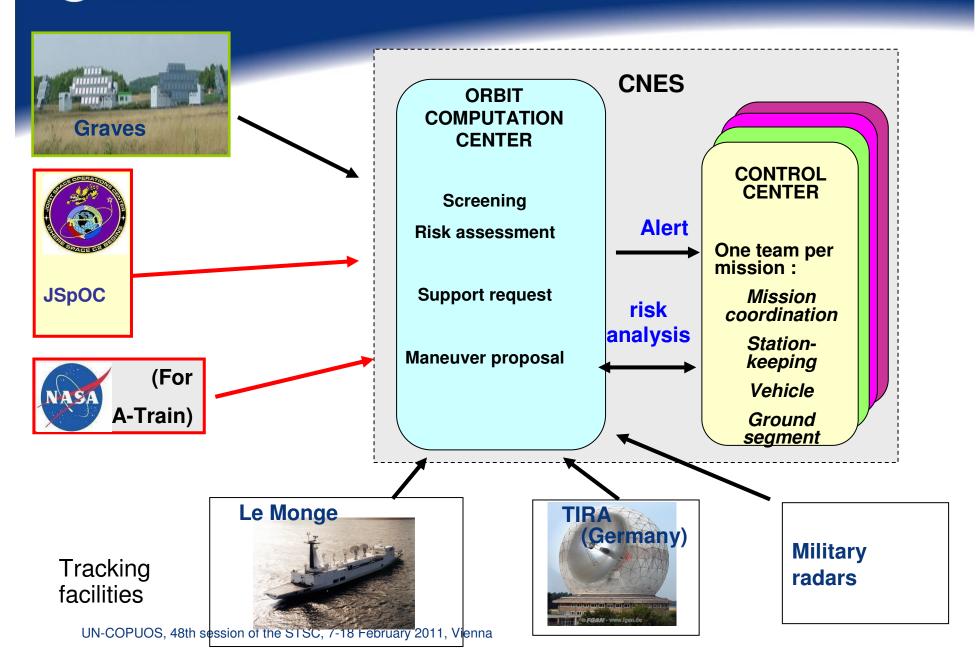
- 4 « ESSAIM » satellites launched December 18, 2004, Ariane 5
- « Myriade » platform: ~120 kg, formation flying
- Quasi heliosynchroneous orbit around 700 km altitude
- Mission: characterization of the electromagnetic environment
- Development ASTRIUM + CNES
- ■Operated by CNES on behalf of DGA

2-END OF LIFE OPERATIONS (2/3)

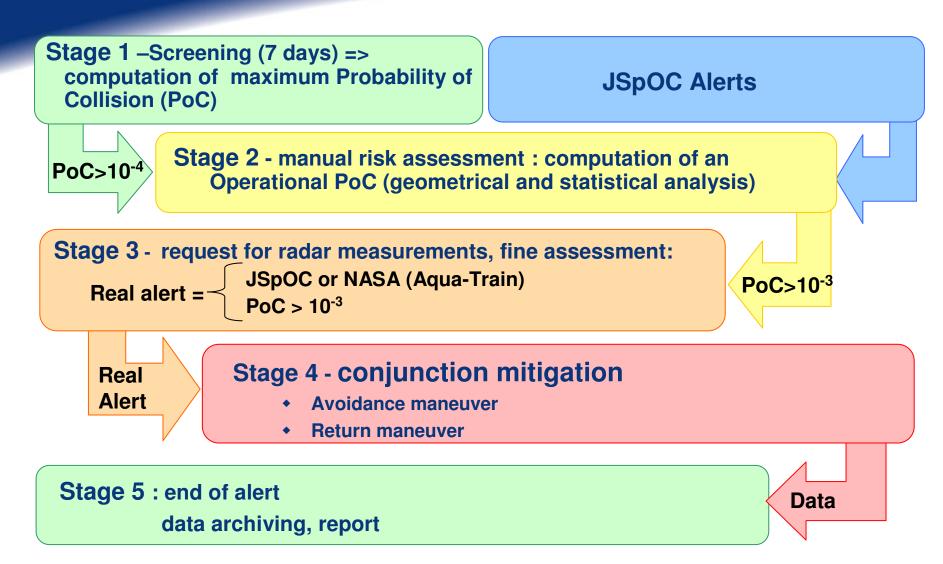
- Essaim end of life operations in September and October 2010
- ■1st step: altitude lowering in order to:
 - reduce the orbital lifetime
 - empty the tanks
 - manage the collision risks between the 4 satellites
- ■2nd step: electrical passivation
 - Battery discharge
 - Satellites swith-off
- Final orbit: the 4 satellites are compliant with the 25-year rule

2-END OF LIFE OPERATIONS (3/3)

- **EUTELSAT W2 built by Alcatel Space**
- Platform Spacebus 3000: 3t
- Launched October 1998 by Eutelsat IGO
- Decommissioned in March 2010 by Eutelsat SA
- **■** Final orbit:
 - Perigee 281 km above GEO
 - Apogee 290 km above GEO
- Will not reenter into the GEO protected region
- Compliant with UN space debris guidelines (2007) and with IADC Mitigation Guidelines


3-COLLISION RISK MONITORING (1/4)

- 17 LEO satellites and 1 GEO satellite controlled by CNES
- Permanent collision risk monitoring and avoidance maneuvers when necessary
- **■Improvements of the procedure:**
 - Use of Conjunction Summary Messages received from US Joint Space Operations Center
 - Use of the Graves catalogue and measurements



3-COLLISION RISK MONITORING (2/4)

3-COLLISION RISK MONITORING (3/4)

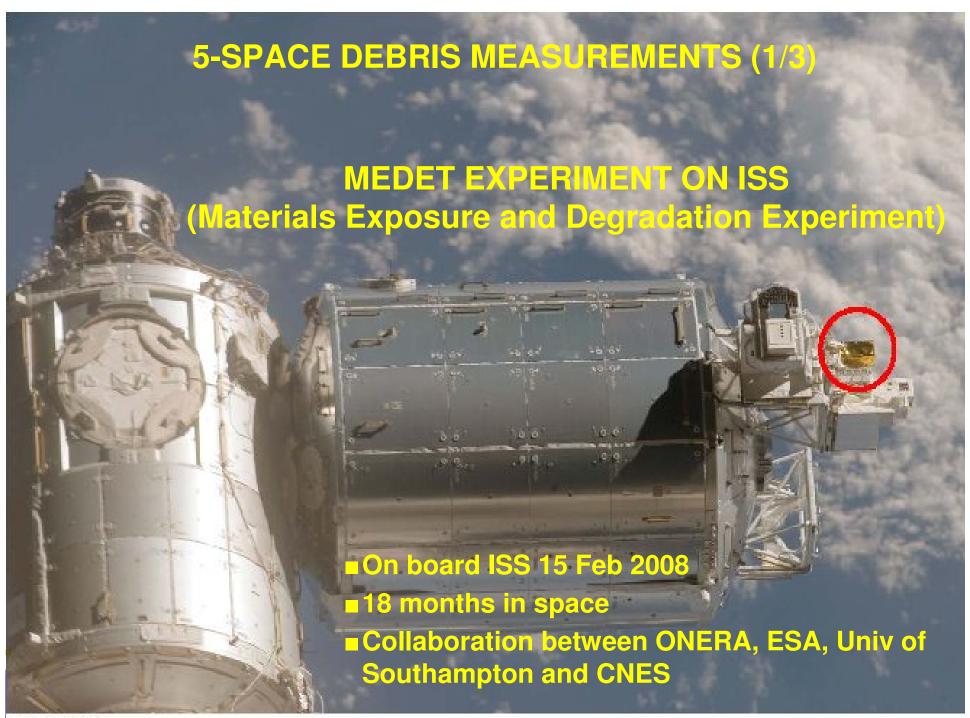
3-COLLISION RISK MONITORING (4/4)

■2010 synthesis:

- 17-18 satellites monitored
- 353 risks identified by the automated process (probability of collision > 10-4)
- ◆ 92 risk alerts received from US JSpOC
- 21 requests for radar measurements or support to JSpOC (probability of collision > 10-3)
- 13 avoidance maneuvers

4-SPACE OPERATIONS ACT (1/3)

- **■** voted by the Parliament in June 2008
- Law entered into force on December 10, 2010
- Objectives: protection of people, property, public health and environment (including on orbit)
- Applicable to:
 - Operators carrying out operations from French territory
 - French operators anywhere in the world
- Operators shall demonstrate compliance w.r.t. Technical Regulations
- Authorizations are granted by the Ministry of Research after analysis of technical aspects by CNES


4-SPACE OPERATIONS ACT (2/3)

- Associated Technical Regulations prepared by CNES in 2009 and 2010 with participation of industry and operators
- ■In line with the UN-COPUOS and IADC Mitigation Guidelines
- **■**Content:
 - Ground safety requirements (controlled and uncontrolled reentry)
 - Space debris limitation
 - End of life operations
 - Collision risk reduction
 - Planetary protection
 - Nuclear safety

4-SPACE OPERATIONS ACT (3/3)

- Methods and tools are proposed to support the implementation of the Technical Regulations:
 - Fragmentation modelling during reentry
 - Estimation of ground risk in case of reentry
 - Determination of compliance with the 25-year rule
 - Long term stability of the GEO graveyard orbit
 - Collision risk during launch phase

5-SPACE DEBRIS MEASUREMENTS (2/3)

- ■Payload dedicated to space debris: SODAD (Système Orbital de Détection Active des Débris)
- ■Collaboration between CNES and ONERA
- Real time monitoring of space debris impacts
- **■** Main objectives:
 - Debris clouds analysis
 - comparison with laboratory tests and numerical simulations, models calibration
 - new orbit population and evolution?
 - environment around satellites and space station (docking)?
 - surface damage effect on satellites
- **■**On-going analysis

5-SPACE DEBRIS MEASUREMENTS (3/3)

■ MOS active surface 5.1 x 8 = 40.8 cm²

- AEROGEL passive surface 4 x 2 x 2 = 16 cm²
- Other surface exposed (RAM plate)

SODAD

UN-COPUOS, 48th session of the STSC, 7-18 February 2011, Vienna

6-WORKSHOPS

- **■GEO** end of life workshop (27 January 2010, Paris)
 - Information of operators on regulatory issues under preparation
 - feed-back from operators having performed end of life operations
- Active Debris Removal workshop (22 June 2010, Paris)
 - Confirmation of the need for debris removal
 - Review of possible solutions
 - Discussion
- Space debris synthesis group (24 June, Toulouse)
 - General information on the in-orbit situation and space debris activities