Swiss Contributions to a Better Understanding of the Space Debris Environment

T. Schildknecht

Astronomical Institute, University of Bern (AIUB), Switzerland

49th Session of UNCOPUOS Scientific and Technical Subcommittee, Vienna, 6-17 February 2012

Outline

- 1. Why a Better Understanding
- 2. Swiss Space Debris Research
- 3. Scientific Highlights
- 4. International Collaboration
- 5. Summary

Why do we Need a Better Understanding?

- Knowledge regarding the space debris environment required to
 - Assess threads (e.g. risk to spacecraft)
 - Design protection measures (e.g. shields)
 - Provide the scientific rationale to devise efficient mitigation/remediation measures enabling sustainable outer space activities

Why do we Need a Better Understanding?

Open Questions

- Population
 - how many?
 - size distribution?
 - orbit regions?
 - nature of objects?
 - sources, sinks?
- Physics/Mechanisms
 - creation
 - evolution of orbits
- Space debris research provides information on environment through
 - Extending the catalogues of "known" space objects towards smaller sizes (deterministic population)
 - → enable active collision avoidance (safety of operations)

Why do we Need a Better Understanding?

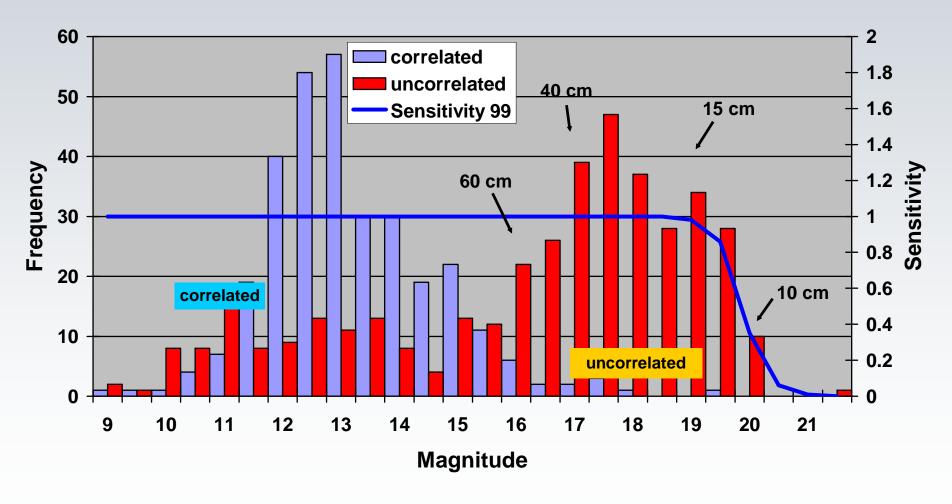
- Space debris research provides information on environment through (cont.)
 - Acquiring statistical orbit information on small-size objects in support of statistical environment models
 - → statistical risk analysis (e.g. mission analysis, shielding, etc.)
 - → input data for long-term evolution models
 - → identification of debris sources
 - progenitors of debris clouds (breakup events)
 - disintegrations of spacecraft due to aging processes
 - Long-term monitoring of environment
 - → identification of new sources
 - > verification of evolution models
 - Characterizing objects
 - → identification of (new) sources

Swiss Space Debris Research

- Observation of artificial satellites at AIUB's Zimmerwald observatory since 45 years
- Essential contribution to the ESA space debris observation program trough
 - software development for the ESA space debris telescope
 - planning, data acquisition, processing, 1992-
 - observations programs (on behalf of ESA)
 - · Geostationary Orbit Objects Survey, 1998-
 - · Geostationary Transfer Orbit Survey, 2001-
 - MEO Surveys, 2008–
 - · Spectroscopic Measurements of GEO objects, 2008-
- Space debris cataloguing and characterization with AIUB's sensors in Zimmerwald

Surveys at the ESA 1-m Telescope, Tenerife

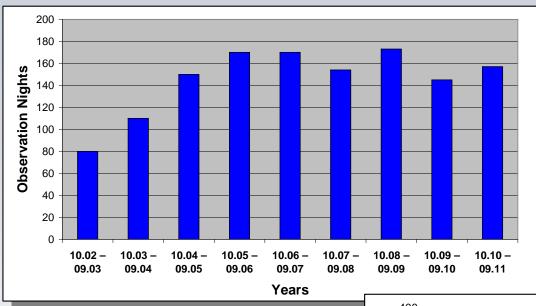
Key Scientific Results (several "firsts")

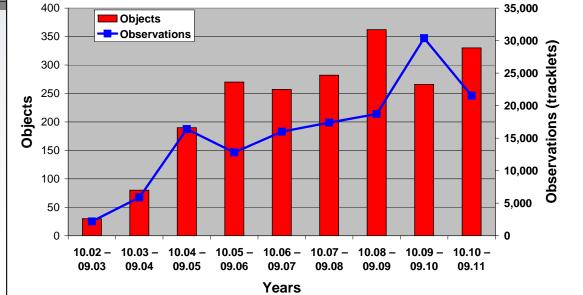

- Longest and most sensitive observations of the GEO/GTO regime
 - Discovery of small-sized (dm) debris
 - → sensors with most significant contribution for objects < 0.4m in IADC GEO campaigns
 - >10 years of continuous monitoring
 - → clusters of debris in orbital element space discovered, evolution studied
 - Input data for ESA MASTER environment model: introduction of "artificial" breakup events in order to model the observed clusters of debris in the 0.2 to 1m size range
- Discovery of "new" (i.e. previously unknown) population of high area-to-mass (AMR) ratio objects
- First spectra of high area-to-mass (AMR) ratio objects

Small-Sized Fragments in GEO (example)



Contributing Swiss Sensors





"Routine", Continuous Operation

ZIMLAT Observation Nights

ZIMLAT Observations / Objects

Slide

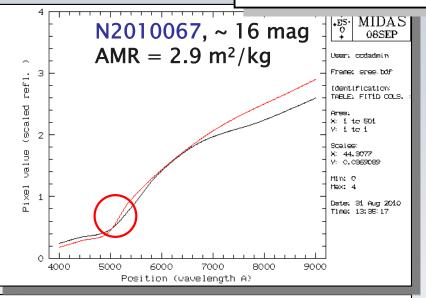
Catalogue of Small-Size Space Debris

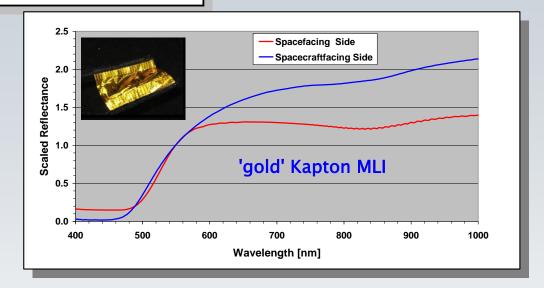
- Build-up and maintenance of orbit catalogue of decimeter-sized debris in GEO (AIUB)
- Why?
 - Density/collision risk lower than in LEO BUT:
 - No sinks → population constantly grows
 - → Mitigation of debris is important
- Need to know nature and sources of debris

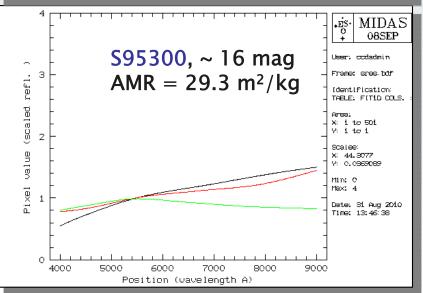
Requires:

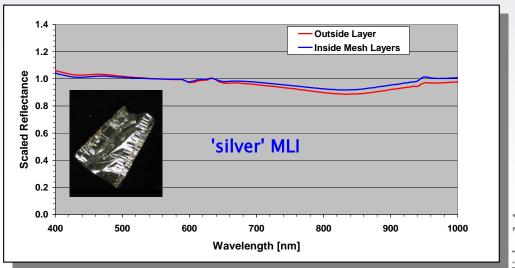
- Orbit catalogue
- Constant monitoring due to perturbations by non-gravitational forces

Networking is Essential

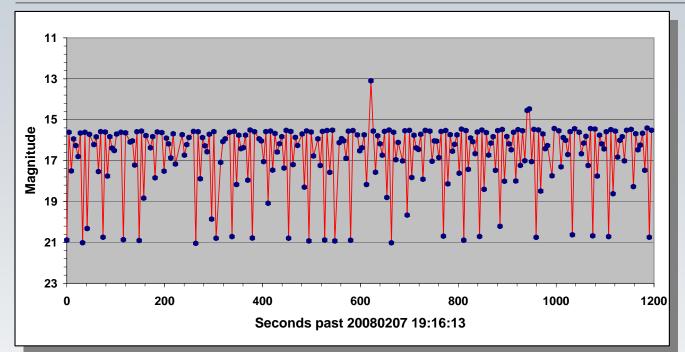

- Discover new objects: Obs. From Tenerife (OGS, AIUB)
- Secure orbits: obs. from OGS, Zimmerwald (AIUB)
- Maintain orbits: obs. from OGS, Zimmerwald, international partners, International Scientific Optical observation Network (ISON), ...
 - Daily orbit maintenance at AIUB and Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences (KIAM)
 - → Orbit catalogue of high-altitude space debris
- Provide data:
 - To other partners (ESA, CNES, JAXA, NASA, Roscosmos...)
 - to investigate physical properties of objects

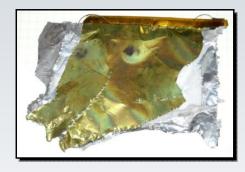




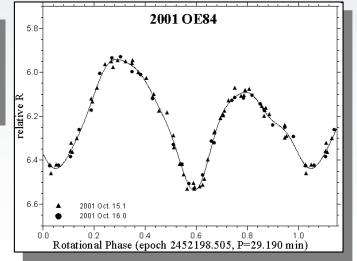

Characterization - Spektrophotometrie

Comparison with Lab Spectra


Slid



Characterization – Light Curves



rotation period spin axis, shape **ZIMLAT**

Slide

International Collaboration

- Active participation in the Inter-Agency Space Coordination Committee (IADC) by
 - exchanging information on space debris research
 - organizing cooperative observation campaigns
 - providing measurements
 - providing orbit predictions
 - author is WG-1 "measurements" chair
- Fostering international collaboration trough bi- and multilateral scientific cooperation
 - partner of Int. Scientific Optical Network ISON
 - scientific collaboration with Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences (KIAM)
 - cooperative observations with ESA, BNSC, NASA, JAXA and other space agencies
 - operational support for ESA

Summary

20 years of Space Debris Research in Switzerland

- Optical survey techniques
 - Algorithms (detection, survey scenarios)
- **Observations**
 - 14 years of space debris surveys at OGS for ESA
 - · Operational, continuous, highly automated observation programs using the Zimmerwald sensors
- Orbit Catalogues
 - Orbit determination techniques/software
 - Build-up and maintenance of space debris catalogue (GEO/GTO)
 - International collaboration
- Physical Characterization
 - area-to-mass ratio from orbital evolution
 - sizes from photometry
 - shapes from light curves
 - materials from color photometry, spectra
- → Scientific basis for sustainable use of outer space

Thank you for your attention!

Thomas Schildknecht

Astronomical Institute
University of Bern (AIUB)
Switzerland

thomas.schildknecht@aiub.unibe.ch