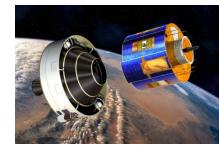
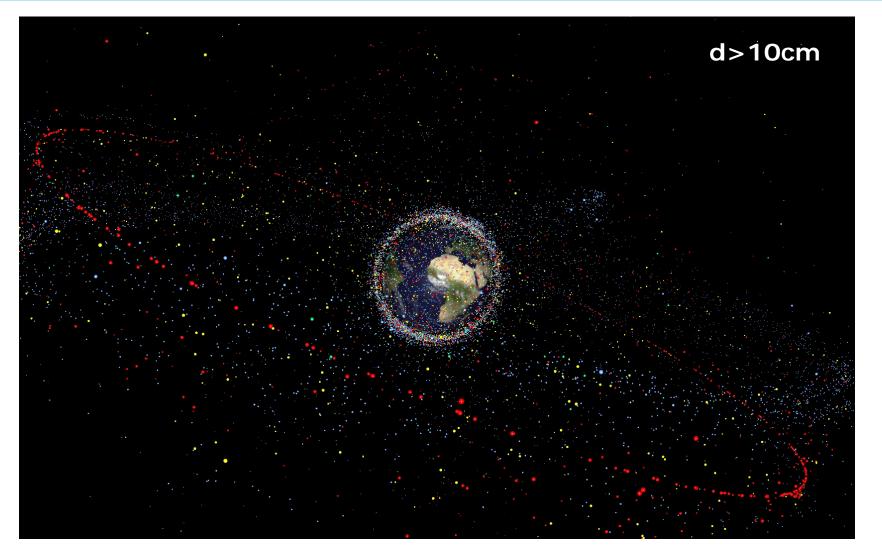


Space Debris Activities at ESA in 2012

Heiner Klinkrad ESA Space Debris Office


Introduction & Current Status

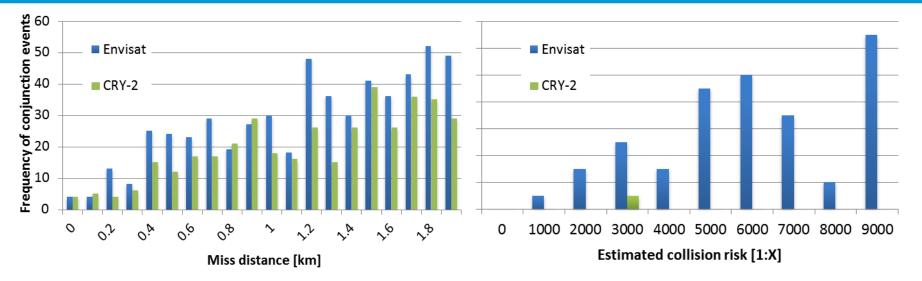
- 4,915 launches since Sputnik-1 produced ~16,967 (~23,000) tracked space objects by 2012 with an on-orbit mass of ~ 6,800 tonnes
- sources of tracked & cataloged space objects:
 - 60% explosion & collision fragments (~250 events)
 ⇒ break-up avoidance
 - 6% active satellites + 16% retired satellites
 ⇒ end-of-mission disposal
 - 11% spent orbital stages + 7% mission related objects
 ⇒ fewer mission-related objects
- tracking size threshold of operational surveillance networks ⇒ 10 cm
- 10 cm objects (~29,000) are likely to cause catastrophic break-ups



Distribution of Catalog-Size Space Objects

ESA Launches in 2012

- Vega maiden launch, 2012-006A-K (Feb.13, 2012, from CSG):
 - main payload ⇒ LARES satellite (I); mission objective: space geodesy; orbit: 1426km x 1451km @ 69.49°; size & mass: 36.4cm Ø, 400kg
 - secondary payloads ⇒ 8 CubeSat-type passengers (each ~1kg); orbits: 310km x 1440km @ 69.49°; orbit lifetimes: ~9 years
 - Avum orbital stage ⇒ final orbit: 274km x 1430km @ 69.50°; size & mass: 1.7m x 2.3m Ø, 131kg (dry); orbit lifetime: ~9 years



Galileo IOV 3 & 4 launch, 2012-049A-B (Oct.21, 2012, from CSG):

- payloads ⇒ Galileo IOV 3 & 4; mission objective: navigation & timing services; orbits: 23,216km x 23,223km @ 55.3°; size & mass: 1.7m x 2.3m x 14.5m, 700kg
- one mission-related object was released and cataloged

Collision Avoidance for ESA Satellites

conjunction statistics in 2012:

- Envisat ⇒ 21(9) conjunctions within 300m, and 53(24) conjunctions with a collision probability exceeding 1:10,000
- CryoSat-2 ⇒ 13 conjunctions within 300m, and 1 conjunction with a collision probability exceeding 1:10,000
- 68% (57%) of all events for Envisat (CryoSat-2) were associated with fragments of the Iridium-33/Cosmos-2251 and FengYun-1C collisions
- no evasive maneuvers were performed in 2012 for ESA satellites;
 Envisat was lost on April 8, 2012, following a spacecraft anomaly

Envisat anomaly:

- following the declaration of a "spacecraft emergency" extensive recovery attempts were initiated as of April 8, 2012; in spite of strong international support (particularly by the USA, France and Germany) the mission was declared lost on June 29, 2012
- since Envisat was approved in 1989 and designed in the 1990s, the mission is not compliant with the 25 year orbit lifetime limitation

ESA CleanSpace initiative:

 several aspects of a "sustainable access to and use of space" (ESA's Agenda 2015) are addressed, with debris mitigation and environment remediation (mass removal from orbit) being part of this effort

ESA Requirements on Space Debris Mitigation:

- an updated set of instructions is in preparation as an "ESA IPOL" document, with close coherence to the ISO 24113 standard
- a supporting "mitigation handbook" and a related training curriculum for ESA Project engineers are being developed

Classification of GEO Objects

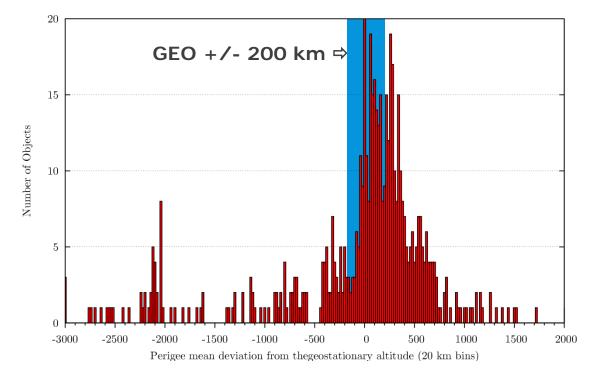
background:

- ESA's report on the "Classification of GEO Objects" (issue 15, 2013) describes the orbital and operational status of tracked objects in or near GEO (for orbits with e < 0.2, i < 70°, 0.9 < n < 1.1 revs/d)
- orbit data are based on information from the USA (USAF/SpaceTrack) and from Russia (KIAM)
- the information is merged & processed by ESA's DISCOS database

GEO end-of-life disposals:

- based on orbit time histories and the termination of associated orbit/longitude maintenance maneuvers, spacecraft retirements are identified, and end-of-life disposal maneuvers are analyzed
- verification of the disposal status is done with spacecraft operators and orbit data providers
- Availability of "Classification of GEO Objects" (issue 15, 2013):
 - please send your e-mail request to ESA, c/o Dr. Tim Flohrer, ESA Space Debris Office (*Tim.Flohrer@esa.int*)

GEO Satellite Retirements in 2012



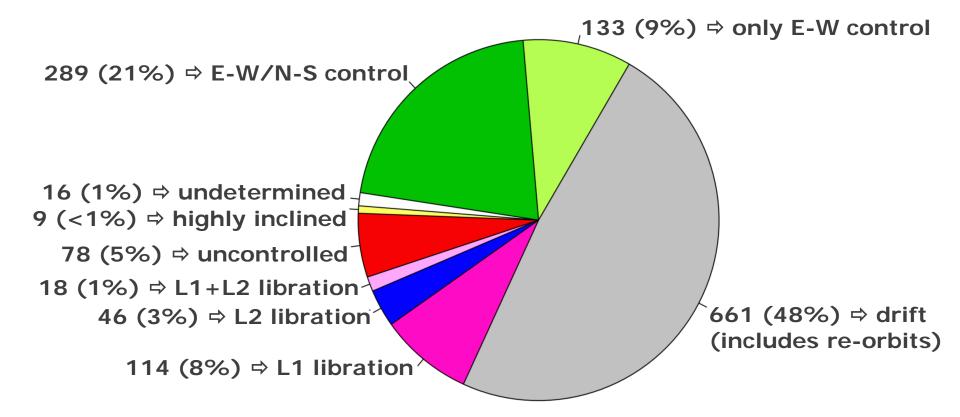
- 9 spacecraft were re-orbited above GEO+250km (IADC conformant):
 - Intelsat VI F-2 (89087A, INTELSAT) ⇒ 336 km x 382 km
 - Inmarsat 2-F4 (92021B, INMARSAT) ⇒ 635 km x 697 km
 - AsiaSat 2 (95064A, Hongkong) ⇒ 247 km x 299 km
 - AMOS 1/Intelsat 24 (96030B, Israel/INTELSAT) ⇒ 867 km x 950 km
 - Telecom 2D (96044B, France) ⇒ 449 km x 591 km
 - Apstar 2R (97062A, China) ⇒ 257 km x 345 km
 - Zhongxing-22 (00003A, China) ⇒ 835 km x 860 km
 - Eutelsat W1 (00052A, EUTELSAT) ⇒ 564 km x 631 km
 - USA 111 (UFO F5) (95027A, USA) ⇒ 422 km x 443 km
- 4 spacecraft were re-orbited too low:
 - GOES 7 (87022A, USA) ⇒ 121 km x 89 km
 - Palapa C1 (96006A, Indonesia) ⇒ 156 km x 227 km
 - Insat 2E (99016A, India) ⇒ 149 km x 198 km
 - Beidou 3 (03021C, China) ⇒ 135 km x 145 km

GEO Satellite Retirements in 2012 (cont'd)

- 1 spacecraft was abandoned in GEO:
 - Cakrawatra 1 (97071B, Indonesia) ⇒ abandoned in L1 libration
- 2 rocket bodies/kick-motors launched in 2012 are within GEO±200km:
 - FengYun 2F AKM (12002C, China) ⇒ 18 km x 480 km
 - Proton-K/DM-2 4th stage (12012D, Russia) ⇒ -38 km x +58 km

post-mission re-orbiting practices are discernible in the perigee altitude distribution near GEO

H. Klinkrad (ESA) | 50th UNCOPUOS STSC | 12-Feb-2013 | page 9



	'99-'02	'03	'04	'05	'06	'07	'08	'09	'10	'11	'12	Total
Left at L ₁	14	_	2	1	2	1	2	3	1	_	1	27 (12.9%)
Left at L ₂	4	1	1	1	1	_	1	_	_	_	_	9 (4.3%)
Left at L ₁ /L ₂	2	_	_	1	_	_	1	_	_	-	_	4 (1.9%)
 Drift orbit (too low) 	17	7	5	5	7	1	1	6	4	3	4	60 (28.9%)
 Drift orbit (compliant) 	14	8	5	11	9	11	6	12	11	12	9	108 (51.9%)
Annual Total	51	16	13	19	19	13	11	21	16	15	14	208 (100%)

compliance with GEO end-of-life re-orbit guidelines (e.g. from IADC) has improved from about 30% to more than 50% since 2002

abandonment of GEO satellites at their end-of-life has been reduced from about 40% to less than 13% since 2002



1,117 TLE catalog objects met "near GEO" criteria (*e* < 0.2, 0.9 < *n* < 1.1 rev/d, *i* < 70°); 247 more objects are known to be in this area
 controlled ⇒ 422 (289 thereof E-W/N-S); uncontrolled ⇒ 942

Status of GEO Objects vs. Launch Year

36 GEO objects were injected in 2012 (34 payloads + 2 rocket bodies)

typical operational lifetimes of GEO satellites are about 15 years; the share of abandoned satellites has decrease since the late 1990s

Conclusions

- the compliance with recommended post-mission disposal measures for GEO spacecraft has continued to improve during the past decade (from about 30% to more than 50% today)
- space debris mitigation is a necessary, but insufficient step; it must be accompanied by space debris environment remediation
- mass removal, particularly from the protected LEO orbit regime, is essential for long-term environment stability, and for a sustainable use of outer space; ESA supports related activities at the LTSSA WG of UNCOPUOS, and in ESA's CleanSpace initiative
- ESA is committed to debris mitigation and environment remediation in cooperation and coordination with international partners