

ASTRILIS REMOTE ASTEROID ACQUISITION MISSION, THE MOST EFFICIENT SOURCING OF MATERIALS FROM SPACE FOR HUMANKIND

PROBLEM

www.astrilis.org

www.micro-space.org

HOW

MUCH

UNITED NATIONS Office for Outer Space Affairs

1

Expert Meeting on Human Space Technology 4 – 6 December, VIC, Vienna, Austria

POLICY

UN/CSS cooperative initiative: Astrilis RAA is one of the 42 projects submitted

- Redirect asteroids that are capable of impacting Earth;
- Park asteroids in GSO for PEACEFUL use and development of our solar system

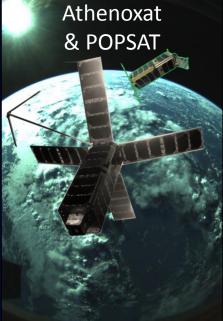
UNITED NATIONS Office for Outer Space Affairs

2

TEAM ASTRILIS www.astrilis.org

UNITED NATIONS Office for Outer Space Affairs

3



TEAM MicroSpace www.micro-space.org

UNITED NATIONS Office for Outer Space Affairs

4

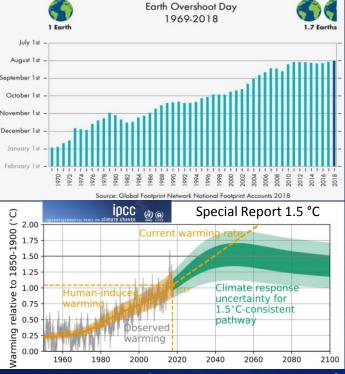
Our Principles

Necessary:
Human expansion
Respect for the environment
Equality and fairness between all human beings
Feasible

UNITED NATIONS Office for Outer Space Affairs

5

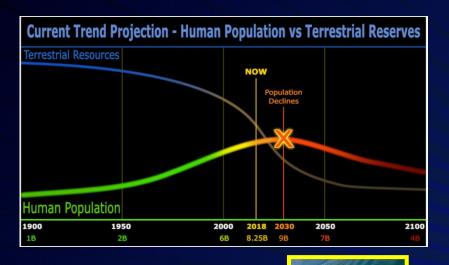
PROBLEM Earth is a closed system


https://oeru.org/oeru-partners/otago-polytechnic/

Micro

Space

UNITED NATIONS Office for Outer Space Affairs

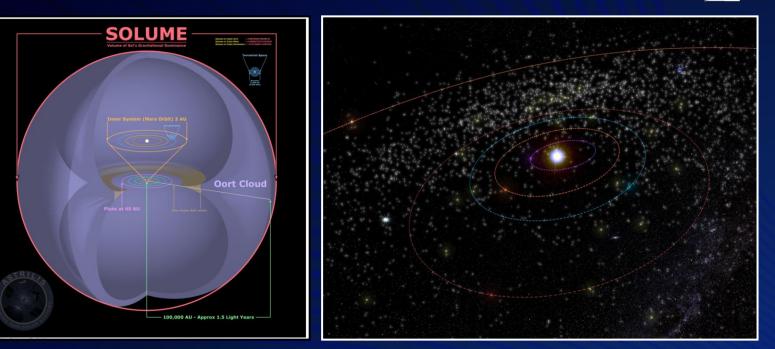


PROBLEM Size < Constraint

$\mathsf{CLOSED} = \mathsf{LIMITED} \rightarrow \mathsf{DECLINE}$

OPEN = UN-LIMITED → GROWTH

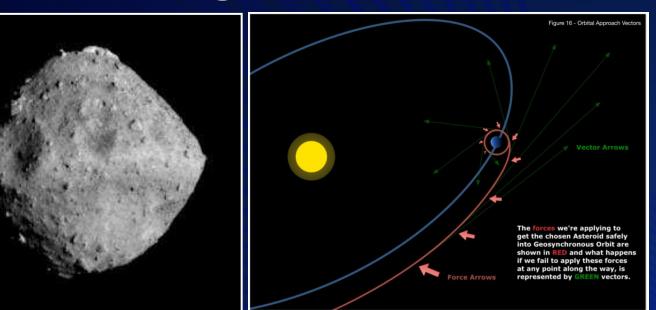
20,000 x


UNITED NATIONS Office for Outer Space Affairs

= 5 Billion (metric) tons / year

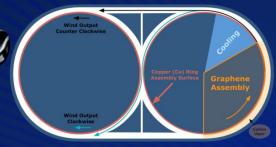
SOLUTION, WHAT Open to the "Solume"

UNITED NATIONS Office for Outer Space Affairs


8

SOLUTION, WHAT Asteroid Acquisition and Parking in to GSO

For example: 162173 Ryugu Size: 1km Mass: 4.5×10⁸ ton We need 10/year...


UNITED NATIONS Office for Outer Space Affairs

9

SOLUTION, WHAT Asteroid Re-Purposing for Habitat and Industry

Expert Meeting on Human Space Technology 4 – 6 December, VIC, Vienna, Austria

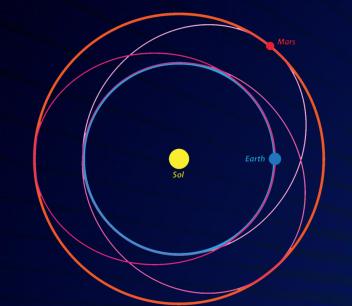
UNITED NATIONS Office for Outer Space Affairs

10

SOLUTION, WHAT Space Elevator

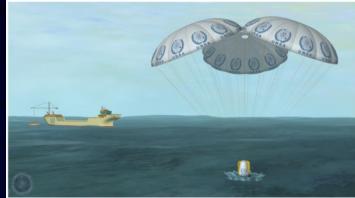
"The Space Elevator will be built about 50 years after everyone stops laughing." [by Arthur Kantrowitz according to Arthur C. Clarke,

http://spaceref.com/space-elevator/the-space-elevator-thought-experiment-or-key-to-the-universe-by-sir-arthur-c-clarke.html]

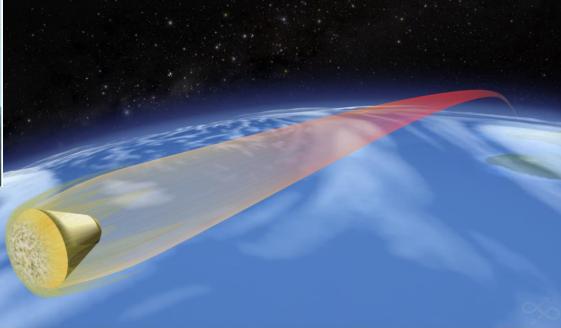

UNITED NATIONS Office for Outer Space Affairs

11

SOLUTION, WHAT Earth-Mars Transfers


UNITED NATIONS Office for Outer Space Affairs

12



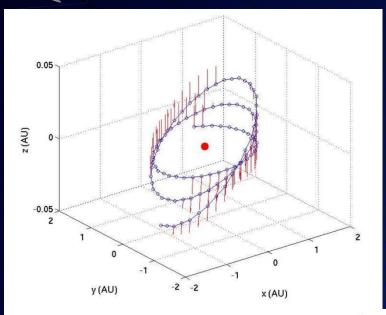
SOLUTION, WHAT Return On Investment

UNITED NATIONS Office for Outer Space Affairs

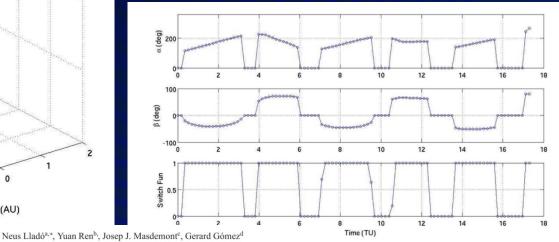
13

SOLUTION, HOW Redirection by Vaporizing

Minimal use of propellant, Return trip fueled by the Sun !



UNITED NATIONS Office for Outer Space Affairs


14

SOLUTION, HOW Necessary Thrust

Asteroid 2011MD (200 ton class) Thrust = 15N ON/OFF profile → 985 days to L2

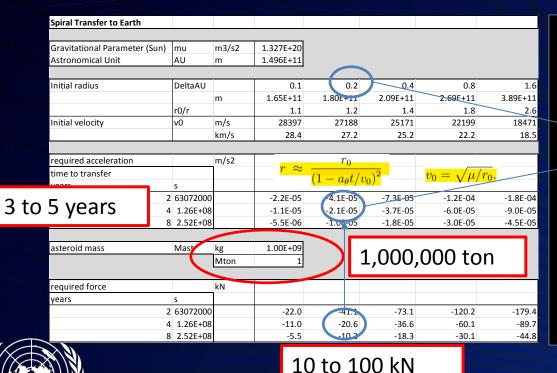
^aElecnor Deimos, Spain ^bDepartment of Earth and Space Science and Engineering, York University. Canada

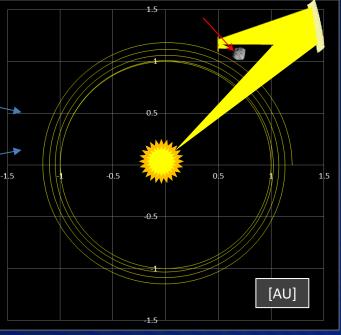
^aDepartment of Earth and Space Science and Engineering, York University, Canada CIEEC & Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Spain d'IEEC & Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Spain

Micro

Space

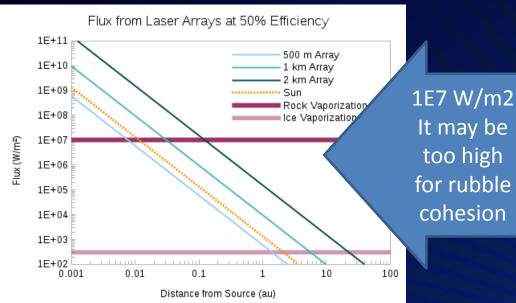
UNITED NATIONS Office for Outer Space Affairs


15


Micro

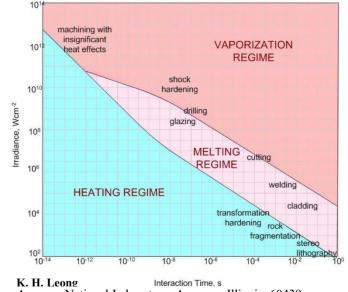
SOLUTION, HOW Necessary Thrust

16



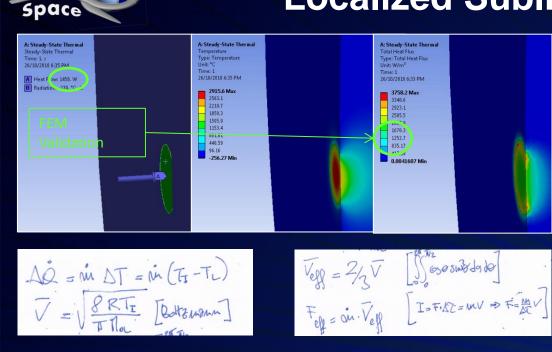
Expert Meeting on Human Space Technology 4 – 6 December, VIC, Vienna, Austria

UNITED NATIONS Office for Outer Space Affairs



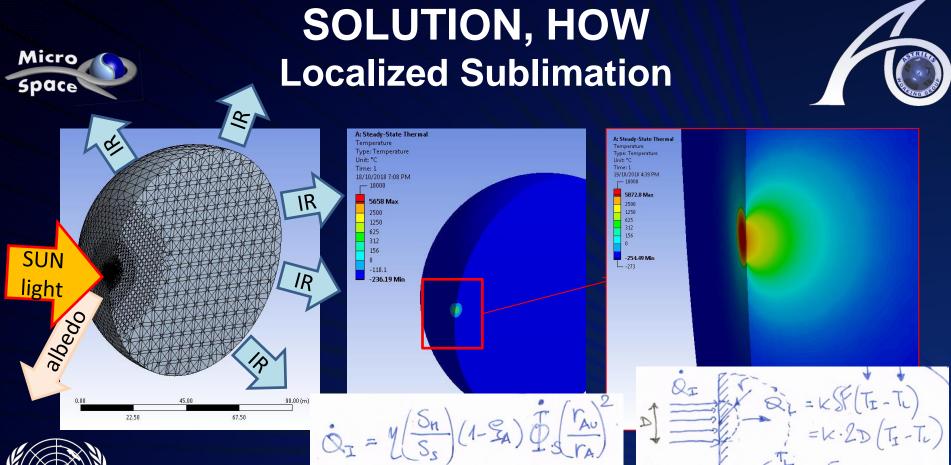
SOLUTION, HOW Localized Sublimation

Qicheng Zhang*^a, Kevin J. Walsh^b, Carl Melis^c, Gary B. Hughes^d, Philip M. Lubin^a ^aDept. of Physics, Univ. of California, Santa Barbara, CA USA 93106-9530; ^bSouthwest Research Institute, Boulder, CO USA 80302; ^cCenter for Astrophysics and Space Sciences, Univ. of California, San Diego, CA USA 92093-0424; ^dStatistics Dept., California Polytechnic State Univ., San Luis Obispo, CA USA 93407-0405


UNITED NATIONS Office for Outer Space Affairs

Argonne National Laboratory, Argonne, Illinois 60439 Operated by The University of Chicago for the United States Department of Energy under Contracts W-31-109-Eng-38

SOLUTION, HOW Localized Sublimation

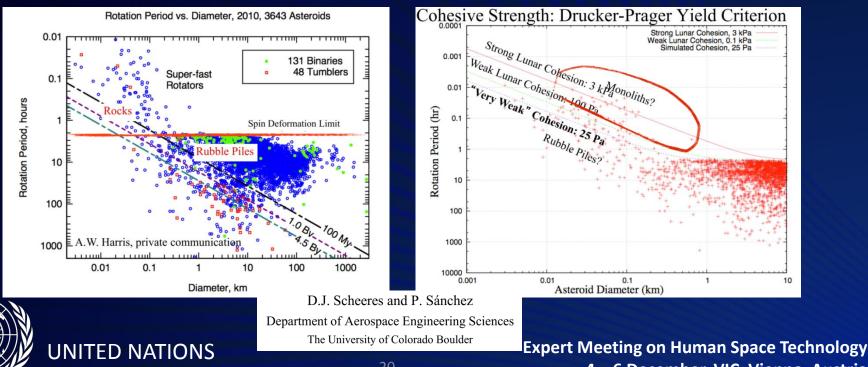


Micro

UNITED NATIONS Office for Outer Space Affairs

18

			_					
Asteroid			2011MD	AWGmin	AWGmid	AWGmid	AWGmax	
reference case			Llado		focussed	blurred		
asteroid size		m	6	20	100	100	1000	
Distance from the Sun		AU	1.5					
Solar constant		W/m2	1300					
Solar energy flux	Qsun	W/m2	867	1				
Aperture size (square)	lmir	m	10	60	700	700	20000	
		km	0.01	0.06	0.7	0.7	20	
Aperture surface	Smir	m2	100	3.6E+03	4.9E+05	4.9E+05	4.0E+08	
Mirror system efficiency			0.95					
Asteroid albedo			0.2					
Incident energy flow	QI	w	6.59E+04	2.37E+06	3.23E+08	3.23E+08	2.63E+11	
		MW	0.1	2	323	323	263467	
Vaporization surface	Svap	m2	0.3	10	0.8	500	30000	
vaporization diameter	d	m	0.6	3.6	1.0	25.2	195.5	
Incident energy flux	Qi	W/m2	2.2E+05	2.4E+05	4.0E+08	6.5E+05	8.8E+06	
Total Heat of Vaporization	Cvap	J/kg	3.33E+06					
rock density (rubble)	rhor	kg/m3	2000					
rock conduction coefficient	krok	W/mK	0.2					
Dissipated energy flow	Qlost	w	569	3288	030	23249	180086	
		W/m2	1898	329	1162	46	6	
		%	1%	0.139%	0.0003%	0.007%	0.00007%	
Vaporizing heat flow	Q	w	6.53E+04	2367912	3.23E+08	3.23E+08	2.6347E+11	
mass flow rate	mdot	kg/s	1.96E-02	7.10E-01	9.68E+01	9.68E+01	7.90E+04	
Vaporizing volume rate (rock)	Vrdot	m3/s	9.79E-06	3.55E-04	4.84E-02	4.84E-02	3.95E+01	
Vaporization depth rate	dvap	m/s	3.3E-05	3.6E-05	6.1E-02	9.7E-05	1.3E-03	
		mm/hour	118	128	217853	349	4742	
Ideal Gas Constant	R	J/molK	8.314					
emission Boltzmann average velocity	vavrg	m/s	1376					
Vaporized volume rate (gas)	Vgdot	m3/s	4.13E+02	1.38E+04	1.10E+03	6.88E+05	4.13E+07	
axial velocity of hemispherical emission	vax	m/s	917					
axial force	Fax	N	18	652	88823	88817	72509008	
		kN		1	89	89	72509	
axial pressure	Pax	Pa	60	65	111029	178	2417	
		bar	0.001	0.001	1.110	0.002	0.024	
asteroid volume	Vast	m3	113	4187	5.2E+05	5.2E+05	5.2E+08	
asteroid density	Rhost	kg/m3	2000	2000	2000	2000	2000	
asteroid mass	Mast	kg	226080	8373333	1.05E+09	1.05E+09	1.0467E+12	
		ton	226	8373	1.05E+06	1.05E+06	1.05E+09	
		Mton			1.0	1.0	1047	
		Bton			0.001	0.001	1.0	
transfer to Earth time	TTTE	years	3	3.1	2.8	2.9	3.3	



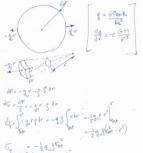
UNITED NATIONS Office for Outer Space Affairs

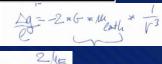
19

SOLUTION, HOW **Asteroid integrity limits** (cohesion and stress)

Office for Outer Space Affairs

20

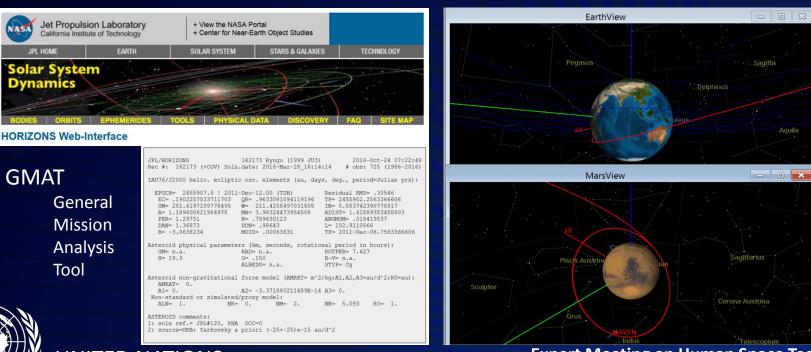

4 – 6 December, VIC, Vienna, Austria



SOLUTION, HOW Risks: Cohesion, Tidal forces

Earth gravitational constant	mu	m3/s2	3.99E+10					
			LEO	MEO	GEO	above	Moon	
Orbital radius	ro	m	7.00E+06	2.10E+07	4.20E+07	6.30E+07	4.00E+08	
gravitational gradient	gu	m/s2/m	-2.32E-10	-8.61E-12	-1.08E-12	-3.19E-13	-1.25E-15	
asteroid density	rhost	kg/m3	1500					
max tidal stress	sigma0	N/m2						
asteroid radius	rast	m						
		10	-1.7E-05	-6.5E-07	-8.1E-08	-2.4E-08	-9.3E-11	
		100	-1.7E-03	-6.5E-05	-8.1E-06	-2.4E-06	-9.3E-09	
		10	- 7E J1	5E 03	-8.1E-04	-2.4E-04	-9.3E-07	
		10000	-1.7E. 01	5.51-01		-2. <u>–</u> 02	-9.3E-05	

Expert Meeting on Human Space Technology 4 – 6 December, VIC, Vienna, Austria


UNITED NATIONS Office for Outer Space Affairs

21

SOLUTION, HOW ASTEROID List, Selection and Simulations

Expert Meeting on Human Space Technology 4 – 6 December, VIC, Vienna, Austria

UNITED NATIONS Office for Outer Space Affairs

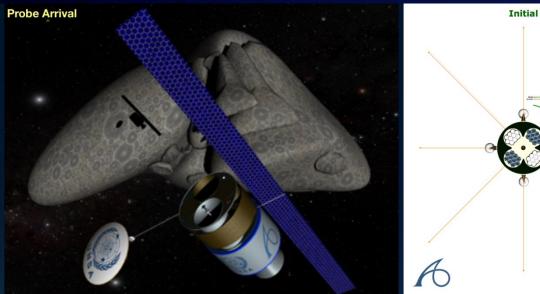
22

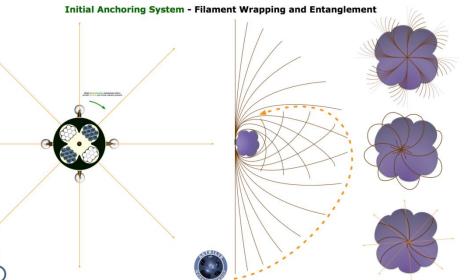
SOLUTION, HOW RAA MISSION START

UNITED NATIONS Office for Outer Space <u>Affairs</u>

23

SOLUTION, HOW UN and CSS ACTIVITIES at CSS




UNITED NATIONS Office for Outer Space Affairs

24

SOLUTION, HOW Probes and Initial Anchoring

UNITED NATIONS Office for Outer Space Affairs

25

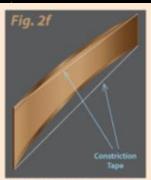
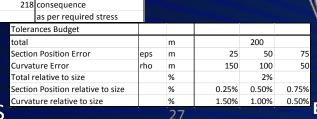


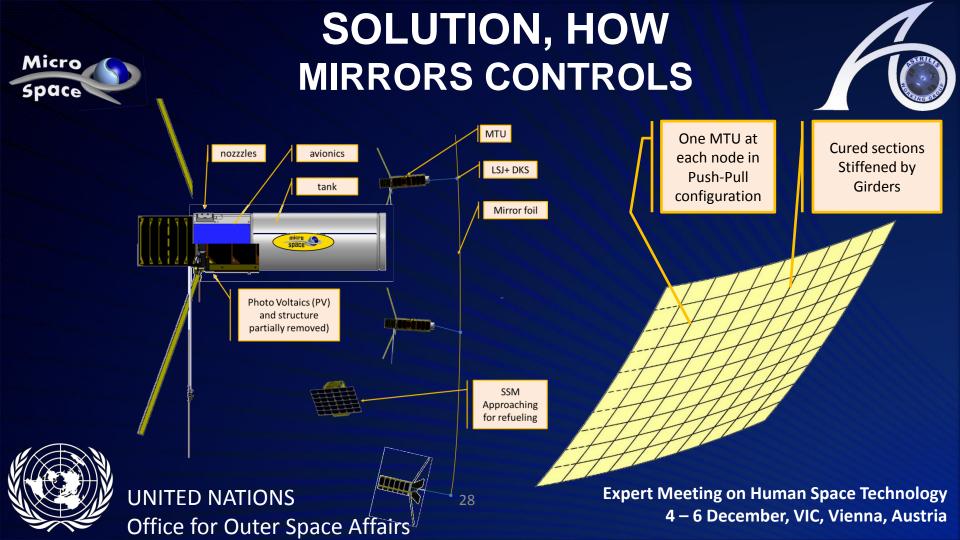
Fig. 2f - Single strip deployment

Fig. 2g - Multistrip Structuring

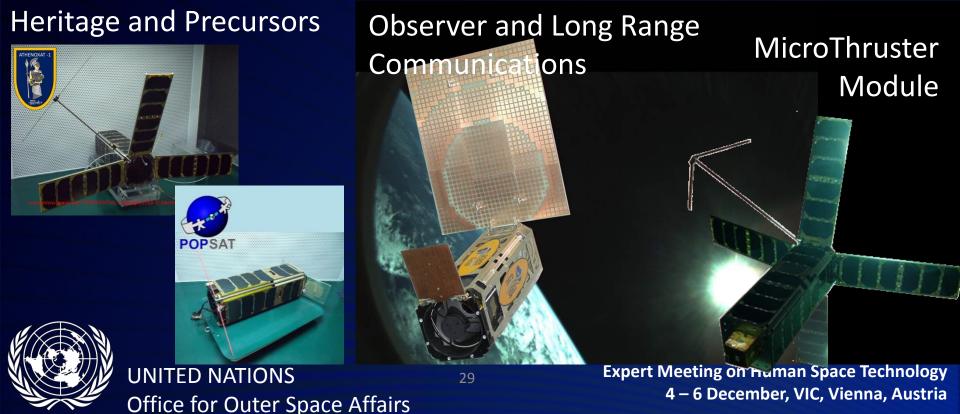
26

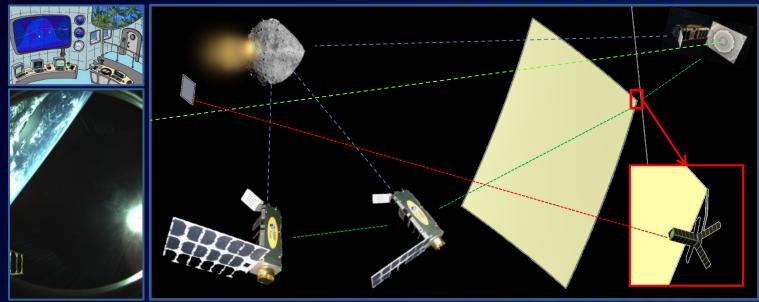

ARTER COLOUR

Overall Configuration

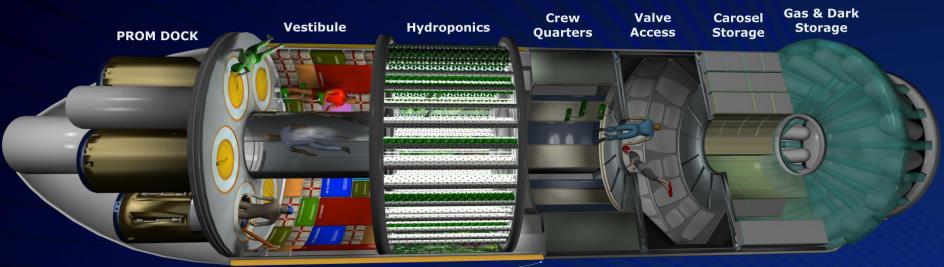

SOLUTION, HOW <u>Mirrors</u> Configuration

100000 50000 25000 our choice Focal length L1 m 50 km 100 25 10000 10000 as per required energy Primary Aperture A1 m 10000 km 10 10 10 2.5 10 5 f/number f/# Asteroid diameter n 1000 1000 1000 1 Bton m 1000 1000 should be not too big Secondary Aperture A2 m 1000 Primary to secondary distance 22500 linear proportion m 12 5000 Secondary position 10000 2500 consequence m 10 5 2.5 km Focal Spot Diameter 0.3 1.1 4.5 Circle of least confusion m Ideal Focal Spot position error % 30% 30% ferr 30% to keep best focusing m 0.1 0.3 1.4 1.7 27 Actual focusing surface m2 0.1 8.4E-07 6 8F-06 5.4E-05 Ideal pointing precision alerr rad to keep same heating point deg 4.8E-05 3.1E-03 3 9F-04 0.2 1.4 11 arcsec verv unfeasible extreme difficult overall very difficult 0.5 0.5 0.5 a guess from experience Possible pointing precision deg rad 0.01 0.01 0.01 873 436 Focal Spot uncertain position 218 consequence m 195 Required focusing area diameter m as per required stress


UNITED NATIONS Office for Outer Space Affairs


SOLUTION, HOW Nano-Spacecrafts

SOLUTION, HOW VISUAL MONITORING AND COMMUNICATIONS

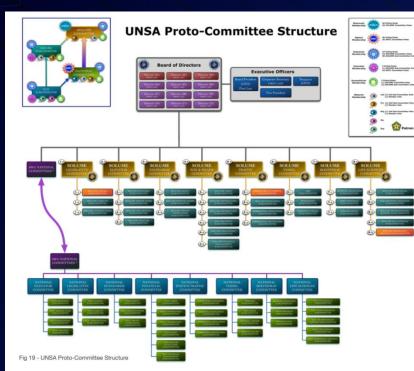


UNITED NATIONS Office for Outer Space Affairs

30

SOLUTION, HOW BOOTSTRAP MISSION

Strip Mirror Wrap-



UNITED NATIONS Office for Outer Space Affairs

SOLUTION, HOW UN SPACE AGENCY

The United Nations Space Agency (UNSA) is needed to govern the exploration, ownership, use and distribution of the limitless potential offered by our solar system to prevent the creation of monopolies, as was done in the 18th and 19th centuries.

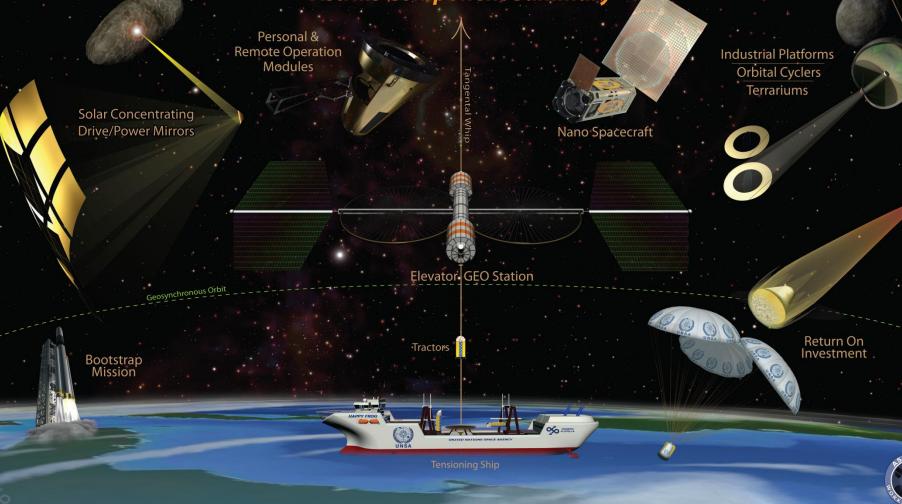
Usage fees paid to the UNSA will be used to help fund activities that support the 17 SDGs

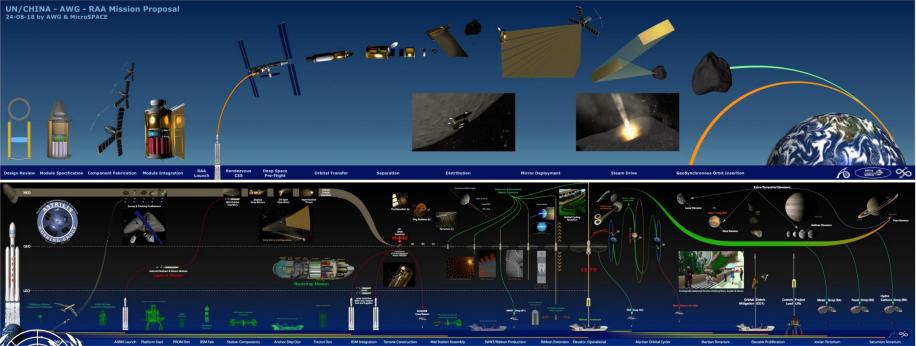
Expert Meeting on Human Space Technology 4 – 6 December, VIC, Vienna, Austria

UNITED NATIONS Office for Outer Space Affairs

32

ASTRILIS SUPPORTS 12 of the 17 SDGs


✓ ENERGY PRODUCTION
✓ INDUSTRIAL RELOCATION
✓ ABUNDANCE OF MATERIALS
→ EQUITABLE DISTRIBUTION
✓ NEW HABITAT FOR PEOPLE
✓ TECHNOLOGY PROGRESS
✓ NEW EMPLOYMENT


UNITED NATIONS Office for Outer Space Affairs

Astrilis Component Summary

TIMELINE

UNITED NATIONS Office for Outer Space Affairs

35

ASTRILIS IS A HIGH IMPACT INITIATIVE

The Astrilis Working Group offers a platform that empowers **international collaboration** to implement solutions that **PRESERVE, SUSTAIN** and **ENHANCE** all life on Earth!

UNITED NATIONS Office for Outer Space Affairs

It's Time to Act !

Micro

Space

giulio.manzoni@micro-space.org dwight.prouty@astrilis.org , bob.roth@astrilis.org

UNITED NATIONS Office for Outer Space Affairs

37

the dawn of the ASTROLITHIC AGE

www.micro-space.org - www.astrilis.org