A Passive Altimetry and Dosimetry Nanosatellite Mission

O. Koudelka, M. Wenger
TU Graz

A. Dielacher, H. Fragner
RUAG Space Austria
Contents

1) Introduction
2) System Design
3) Passive Reflectometry
4) GNSS Link Budget
5) Data Rate Requirements
6) Summary
Introduction

- TU Graz is developing an advanced CubeSat for ESA, called OPS-SAT
- RUAG Space Austria and TU Graz: study of passive reflectometry (ASAP project)
- Proposal for an Austrian CubeSat to GSTP: PRETTY (Passive REflectometry and DosimeTrY)
- 3U CubeSat with powerful processor and SDR front-end
Passive Reflectometry

Altimetry:
determine relative Delays between direct/reflected signal
PRETTY

Triple CubeSat (10 x 10 x 30 cm) with deployable solar arrays
Power: 24 W
PRETTY

Satellite Bus: flight-proven subsystems
OBC, EPS, UHF transceiver
structure, deployable solar arrays
GNSS Antenna

- 8 L-band patches antennas
 - Gain: 15 dBi
 - Beamwidth: 25.5°
 - Bandwidth ~ 70 MHz
Main Payload: Satellite Experiment Processing Platform (SEPP)

- 2 x System on Module Altera Cyclone V SoC in cold redundancy
- Memory
 - 1 GB DDR3 RAM (ECC)
- Mass Memory
 - external 8 GB Industrial SD-Cards (SLC)

developed by TU Graz

Radiation-tested at ESTEC up to 20 krad
Software-defined Radio Receiver

- RF front-end based on commercial SDR chip
- Interfacing with processing platform
- Frequency range: 300 MHz – 6 GHz
Dosimeter

- Measuring radiation environment inspacecraft
- Using small, low-power payload with a RADFET
- Payload developed by Seibersdorf Laboratories
Grazing Altimetry

- Ice area/height analysis
- Sea height analysis
- Measurements at incident angles > 70 degrees
- Moderate requirements on the attitude control system
- Pointing accuracy: 1 degree
Reflection Coefficients
Cross-Correlation

• Cross-correlation approach does not require any knowledge of GNSS spreading codes:
 – encrypted GPS P(Y)-codes,
 – the classified GPS M-code
 – Galileo E1-A signals can be utilised.

• Increases the total signal energy

• Grazing reflections: significantly longer coherence times than reflections at small incidence angles.

• Coherent integration times up to 50 ms expected

• L-Band data down link of geostationary satellites
Data Rate Requirement

- S-Band downlink
- Data rate: 1 Mbit/s
- Data volume/day download: 1.8 Gbit
- Data volume generated: 55 Gbit (max.)
- Reduced duty cycle
- Data compression
Summary

• PRETTY: Passive Reflectometry mission
• Using 3U CubeSat (heritage from OPS-SAT)
• Powerful processor & SDR front-end
• Altimeter realised
 – Sea height
 – Ice cover
• Contribution to climate monitoring
• Measuring of radiation effects
• Phase B running under ESA‘s GSTP program
• Flight in about 2 years expected
Acknowledgements

• Roger Walker (ESA Technical Officer)
• Andreas Hörmer (TU Graz)
• Franz Teschl (TU Graz)
• Robert Finsterbusch (TU Graz)
• Reinhard Zeif (TU Graz)
• Peter Beck (Seibersdorf Laboratories)

This project is carried out under ESA‘s GSTP program with RUAG Space Austria as Prime Contractor
Thank you for your attention!