

"A Journey to the Moon by Korea"

Korea Aerospace Research Institute

"

11 Koreans have been observing stars for thousands of years

Cheomseongdae("Star-gazing tower")Built during the 7th centry ADThe oldest astronomical observatory in East Asia

Phase 1 - KPLO(Korea Pathfinder Lunar Orbiter)

ltem	Parameters	
Mass	≤ 678 kg	
Bus Power @ EOL	Average 760 Watt, (2-wing, 1-axis S/A)	
Main Bus Voltage	26.4 ~32.8V unregulated	
Mission Life	4 Months (Transfer-orbit) + 12 Months (Mission-orbit, include commissioning a month)	
Lunar Transfer Trajectory	Ballistic Lunar Transfer(BLT) / Week Stability Boundary(WSB)	
Mission Orbit	Altitude : 100 \pm 30km, Inclination :90 \pm 0.25deg	
Propulsion System	Monopropellant System OMT : 30N Thruster (4EA) ACT : 4.45N Thruster (8EA)	
Communication	S-band(Uplink) : 0.5Kbps, 1.0Kbps S-band(Downlink): 1.024Kbps, 16.384Kbps X-Band(Downlink): 8.5Mbps @HGA	

KPLO = 다누리 (Danuri) "Dal" (Moon) + "Nuri" (Enjoy)

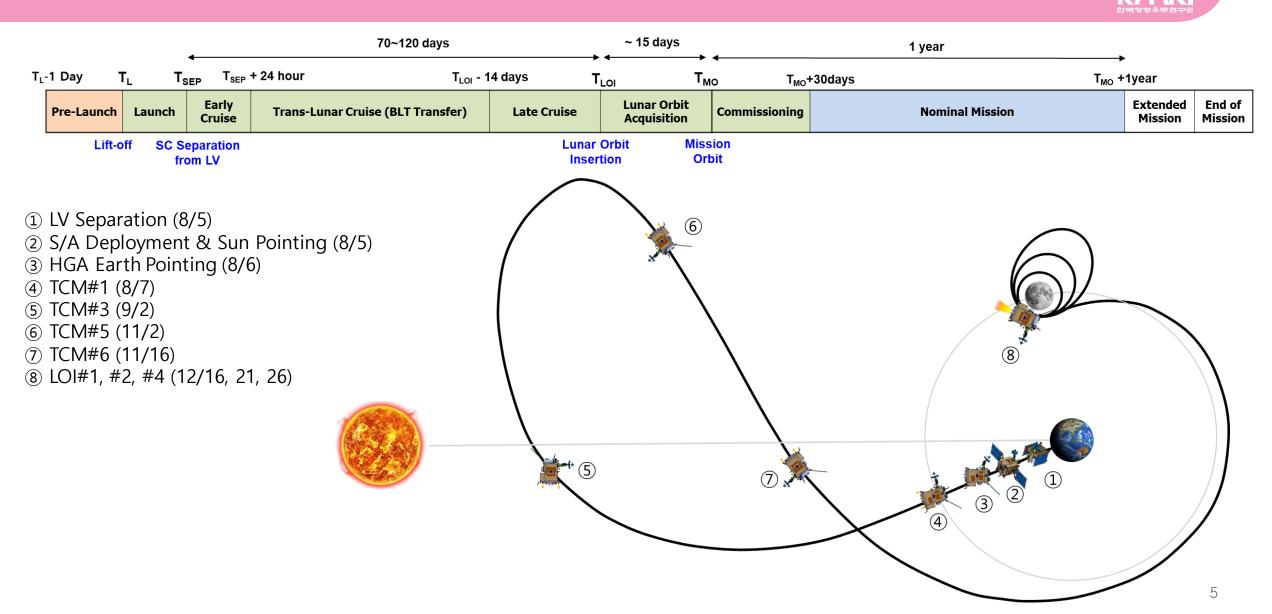
KPLO Magnetometer (KMAG) - 3.4kg

Kyung Hee University *Megnetic strength of lunar environment*

KPLO Gamma Ray Spectrometer (KCRS) - 6.3kg

Korea Institute of Geoscience and Mineral Resources Spatial distribution of major elements (Chemical Composition)

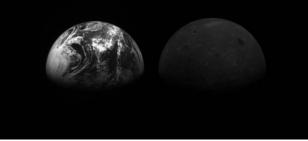
Delay Tolerant Network Experiment Payload (DTNPL) - 0.8kg


Electronics and Telecommunications Research Institute Interplanetary internet communication technique (Demonstration) ShadowCam (SCH) – 9.3kg Arizona State University / NASA Investigation of permanent shadow regions

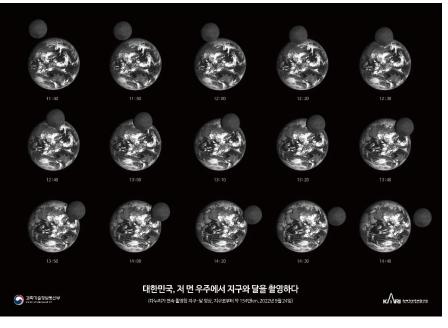
Wide-Angle Polarimetric Camera (PolCam) - 2.6kg Korea Astronomy & Space Science Institute Polarimetric Image and titaniummap of Moon (Far Side)

Lunar Terrain Imager (LUTI) - 12kg

Korea Aerospace Research Institute Hgh-resolution lunar surface image (Korean Lunar Lander)


Major Event of KPLO in BLT/WSB Trajectory

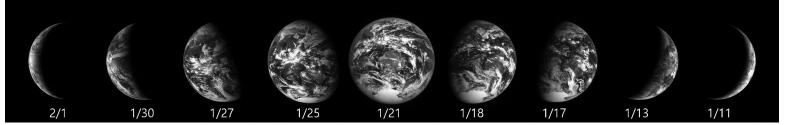
Special Images taken by Danuri during Journey to the Moon



2022/11/28

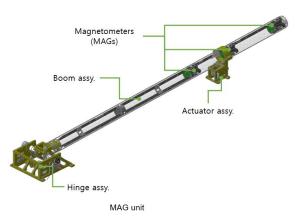
2022/12/31

Transition to earth @ 2022/9/24


After LOI#2 @2022/12/24

Mission Orbit @ 2022/12/28

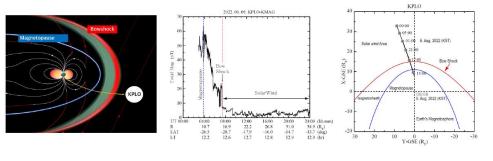
Earth Phase Change for a month (2023/1/6 ~ 2/4)



 Earth is 4 times bigger than the Moon(Moon was 4 times farther than the Earth from Danuri)

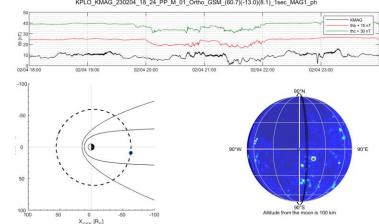
KMAG (KPLO Magnetometer)

KMAG Configuration



- Supplier: Kyung Hee Univ.
- To measure the magnetic strength of the lunar environment.

Specification


ltem	Contents		
Science	Measure DC and low frequency perturbations of the magnetic field in space and Moon		
Performance	Measuring range	± 1000 <u>nT</u>	
	Resolution	< 0.2 <u>nT</u> at 10 Hz sampling rate	
System	Mass	Total 3.5 kg	
	Power	Input: +28 V (unregulated +24 ~ 32.8 V) Consumption: 4.6 Watt	
	Interface	RS-422, 115,200 bps	
	Operating temperature	MAG Unit : -55°C ~ +70°C FCE Unit : -20°C ~ 50°C	
Magnetic cleanness	< 700 nT at the inner magnetometer (MAG3) in the boom		
Operation	Duty: 100% Data generation: 295.31 Mbit/day		

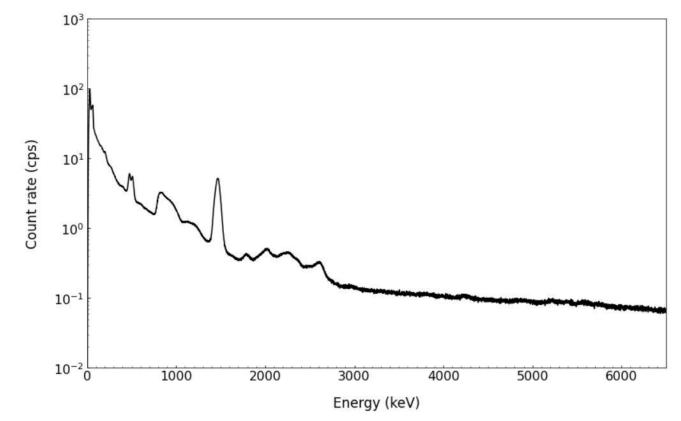
- Observation on the Earth Magnetopause & Bow shock boundary(where the earth magnetic field rapidly declines) on 05, Aug. 2022
 - During the journey to the moon

- Observation on the Lunar Orbit 04, Feb. 2023
 - KMAG is operating normal and measuring the magnetic field around the lunar orbit
 - Comparison to Themis B & C

KPLO KMAG 230204 18 24 PP M 01 Ortho GSM (60,7)(-13,0)(8,1) 1sec MAG1 pl

KGRS(Gamma Ray Spectrometer)

KGRS Configuration



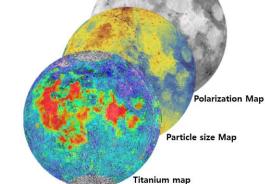
- Supplier: Korea Institute of Geoscience and Mineral Resources(KIGAM)
- To investigate the chemical composition of the lunar surface materials by mapping the spatial distribution of gamma-ray energy(30 keV ~ 12 MeV).

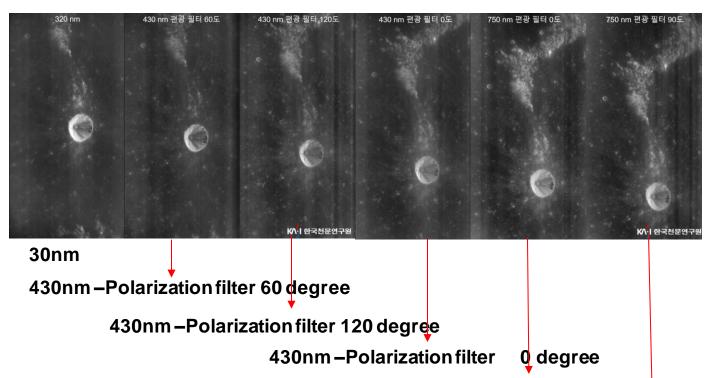
Specification

Item	Contents		
Science	Measure Gamma-rays from the Lunar surface for elemental mapping		
Performance	Energy range	~30 keV to 12 MeV (H.G.: 3 MeV, L.G.: 12 MeV)	
	Energy resolution	< 5 % @ 662 keV	
System	Mass	Total 7 kg (SU, EU)	
	Detectors	LaBr ₃ (primary), BLPS (shielding)	
	No. Energy channels	LaBr ₃ (8192,4096), BLPS (1024)	
	Power	Input: +28 V Consumption: 8.5 W	
	Interface	RS-422, 115,200 bps	
	Operating temperature	SU: Operation: -20 °C ~ +50 °, Survival: -35 °C ~ +65 °C EU: Operation: -20 °C ~ +55 °C, Survival: -30 °C ~ +70 °C	
Operation	Life time	~ 1 year	
	Data collection / generation	10 sec / Max. 1.85Gbits / day (Duty 100%)	
	Pointing	Nadir direction	

- Observation during 9 days on lunar orbit
 - Provided by KiGam

- 9 consecutive days of gamma ray observation accumulated data(sampling interval: 10 seconds)
- KGRS works well with low energy level

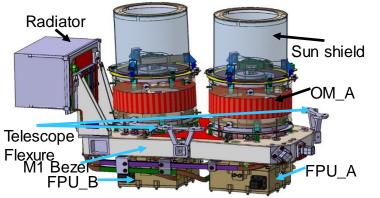

PolCam (Wide-Angle Polarimetric Camera)


Optical Module

- Supplier: Korea Astronomy & Space Science Institute(KASI)
- To acquire the polarimetric images of the lunar surface except the polar regions to investigate the characteristics of lunar regolith.
- Can acquire the polarimetric images on the far side of the moon(Not directly visible from the Earth)
- The First polarization observation in the world from lunar orbit(many cases exist for polarized observations with ground based telescope)

- Observation Wichmann Crater 11, Jan. 2023
 - 6-channel polarization imaging

750nm-Polarization filter 0 degree


750nm-Polarization filter 90 degree

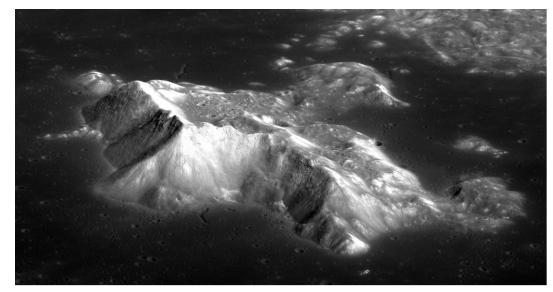
- Mapping and Resolution : 35.2 km at 100 km orbit
- Multi-Band : 320, 430 and 750 nm
- Phase Coverage: 45° of tilting angle

LUTI (Lunar Terrain Imager)

LUTI Configuration

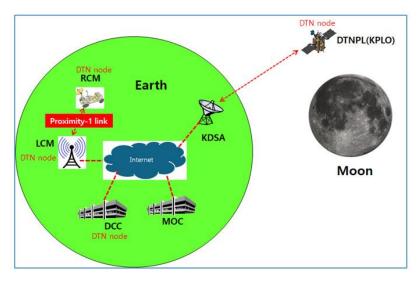
- Supplier: Korea Aerospace Research Institute(KARI)
- To take less than 5m high resolution images(>8km swath width @ 100km) for possible landing sites of the 2nd stage lunar exploration mission

Requirement
Mass: 3.5 kg
1 st natural frequency > 120Hz
Design load: 30g
Critical Interface Stability M1 distance to M2 : \pm 3 µm Decenter : \pm 10 µm , Tilt : \pm 50 µrad
Op Temp.: -5°C ~ +40°C Nop Temp.: -15°C ~ +55°C
Sine Qual. Level : 20g Random Qual. Level : 14.1grms (X, Y), 18.4grms(Z)
Shock response spectrum 2,000 – 10,000 Hz : 700g (X, Y) 3,000 – 10,000 Hz : 700g (Z)



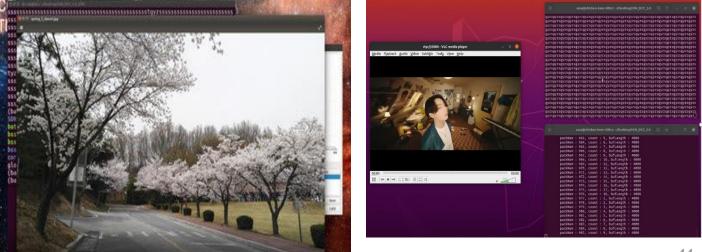
 Observation Tsiolkovsky Crater(a large lunar impact crater located on the far side on the moon) and Peaks on Lunar Surface 21, March 2023

Total image width : ~220Km


Enlargement

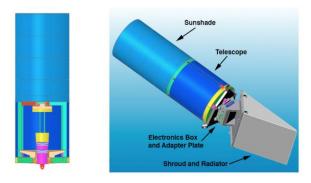
DTNPL (Delay Tolerant Network Experimental Payload)

- **DTN** (Supplier: Electronics and Telecommunications Research Institute)
 - The purpose of DTNPL is to test DTN communication between DTNPL onboard the KPLO and ground station to verify DTN is useful for the space communication
 - For the DTN test, Lander & Rover DTN communication models will be located on Earth to emulate Lander & Rover communication on Lunar surface (Left figure)
 - Contents of DTN tests
 - DTN message, DTN file transfer using CFDP, DTN video streaming

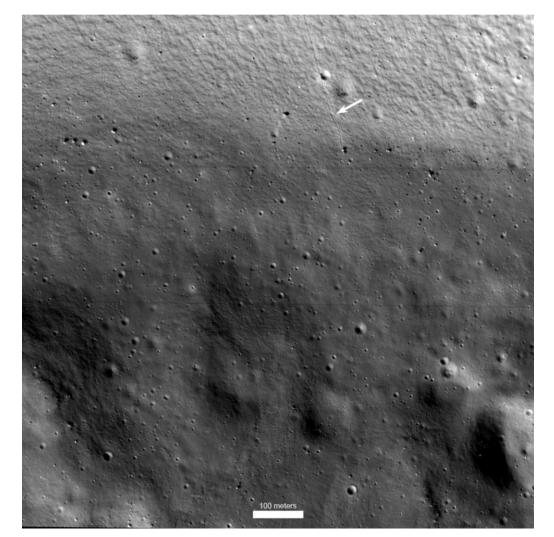

DTN Network Configuration

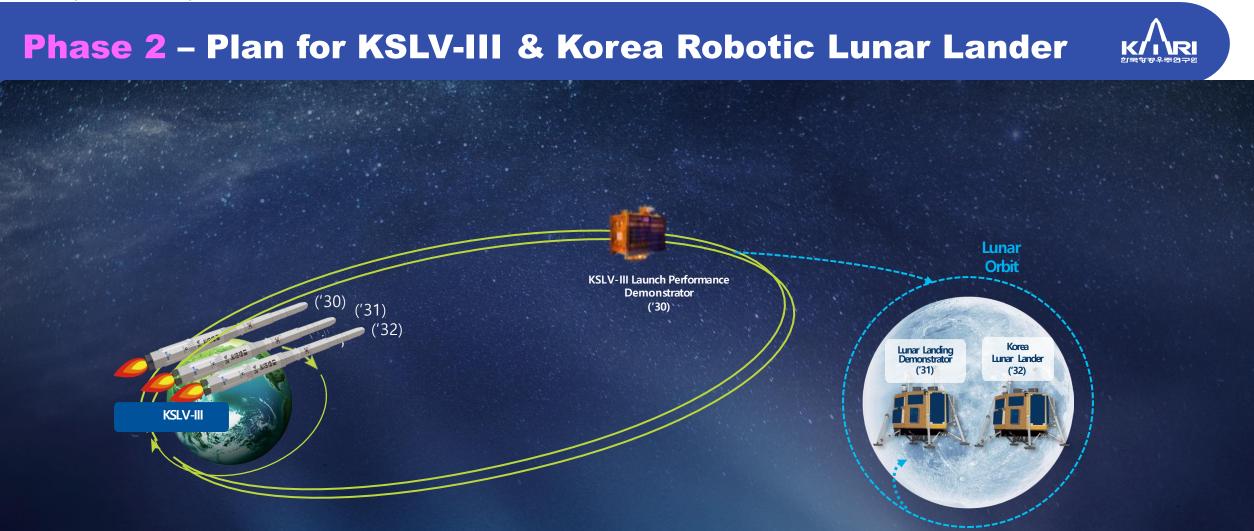
Communication test at about 1.2million km after travelling to SUN

High resolution image transmission

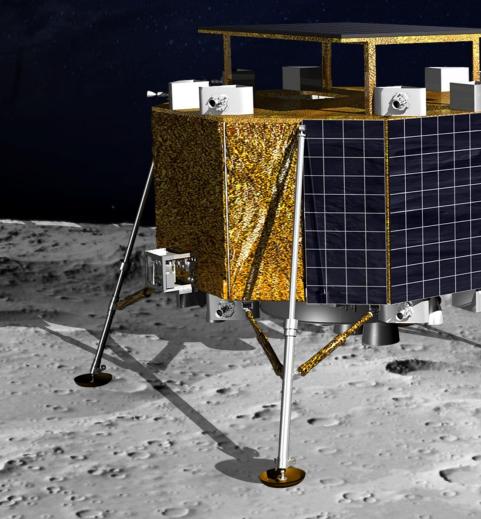

Real-time live video streaming

SHC (ShadowCam)


SHC Configuration



- Supplier: NASA(& Arizona State Univ.)
- To map the reflectance within the permanently shadowed regions to search for evidence of frost or ice deposits.
- To observe the PSRs to detect seasonal changes and measure the terrain inside the craters, including the distribution of boulders.
- Based on LRO Narrow Angle Camera, but 800 times sensitive
- SHC Description
- Rebuild of an LROC NAC, but with a Time Delay Integration (TDI) detector
 - >500x sensitivity (TDI, integration time, pixel size)
- Saturate in illuminated regions
- PSR imaging with SNR >100, pixel scales of 1.7 m from <u>100 km altitude</u>


Shackleton Crater in Unprecedented Detail

Credit: NASA (https://www.nasa.gov/feature/nasa-s-s-hadowcam-images-lunar-south-pole-region)

Phase 2 - Korea Robotic Lunar Lander

Korea Robotic Lunar Lander Overview

- Launch Vehicle: Next-generation KSLV (KSLV-III)
 - Launch date: Late 2032
 - Launch mass: 1800 kg
 - Payload mass: 43 kg (TBD) (2.4% of Wet Mass)
- Lunar Transfer Trajectory
 - Direct Trans-Lunar or Phasing Loop Transfer
- Lunar Surface Landing
 - Precise Soft Landing with Hazard Avoidance
- Mission
 - Rover, RTG, Lunar Sci. & ISRU Tech. Demonstration

Thank you

Korea Aerospace Research Institute

