Space Debris Research in Switzerland

T. Schildknecht

Astronomical Institute, University of Bern (AIUB), Switzerland

54th Session of UNCOPUOS Scientific and Technical Subcommittee, Vienna, 30 January –10 February 2017
Why should we Care

- **S/C Owners/Operators**
 - Safety of flight
 - Prevent collisions (traffic management, collision avoidance maneuvers)
 - Contingency: cause?

- **S/C designers**
 - Risk analysis
 - Shielding (shields, passive shielding)

- **Mission analysts, launch campaigns**
 - Risk analysis, trajectory optimization
 - Launch conjunction analysis

- **Governments, Space Agencies, Scientists**
 - Protecting vital space services
 - Long term sustainable use of space
 - Evolution
On-board camera picture

Impact on August 23, 2016
Small power loss (5%) → analysis revealed attitude & orbit changes → mm-size impactor (SSN found 5 obj. in vicinity)
Space Debris Research

• Open Questions
 ▪ Population
 • how many?
 • size distribution?
 • orbit regions?
 • nature of objects?
 • sources, sinks?
 ▪ Physics/Mechanisms
 • creation
 • evolution of orbits
 • long-term evolution: \(\rightarrow \) models

• Approach
 ▪ Search for debris (surveillance)
 ▪ Determine orbits
 ▪ Characterize
Space debris research provides information on environment through

- **Extending the catalogues** of “known” space objects towards smaller sizes (deterministic population)
 → enable active collision avoidance (safety of operations)

- **Acquiring statistical orbit information** on small-size objects in support of statistical environment models
 → statistical risk analysis (e.g. mission analysis, shielding, etc.)
 → input data for long-term evolution models
 → identification of debris sources
 - progenitors of debris clouds (breakup events)
 - disintegrations of spacecraft due to aging processes

- **Long-term monitoring** of environment
 → identification of new sources
 → verification of evolution models

- **Characterizing objects**
 → nature of objects; support ADR
Swiss Optical Ground Station Zimmerwald
Contributing Swiss Sensors

1-m ZIMLAT
Switzerland

SMARTnet-1
Surveys at the ESA 1–m Telescope, Tenerife

Continuous program since 1999
10–12 nights/month
operated by AIUB
Key Scientific Results (several “firsts”)

- **Longest and most sensitive observations of the GEO/GTO/MEO regime**
 - Discovery of small-sized (dm) debris in GEO
 - >18 years of continuous monitoring
 - clusters of debris in orbital element space discovered, evolution studied
 - Essential input data for ESA MASTER environment model

- **Discovery** of "new" (i.e. previously unknown) population of high area-to-mass (AMR) ratio objects

- **First** spectra of high area-to-mass (AMR) ratio objects

- **Attitude Motion** of small and large size debris
Small-Sized Fragments in GEO (example)
Characterization – Spektrophotometry

Comparison with Lab Spectra

N2010067, ~ 16 mag
AMR = 2.9 m²/kg

S95300, ~ 16 mag
AMR = 29.3 m²/kg
Characterization – Light Curves

rotation period
spin axis, shape

- ZIMLAT
Remediation

EPFL CleanSpace One
09051B Swisscube
Attitude Motion of Topex

SLR Residuals

Optical Light Curve
International Collaboration

• Active participation in the Inter–Agency Space Debris Coordination Committee (IADC)

• Fostering international collaboration trough bi– and multilateral scientific cooperation
 ▪ partner of Int. Scientific Optical Network ISON
 ▪ scientific collaboration with Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences (KIAM)
 ▪ cooperative observations with ESA, NASA, JAXA and other space agencies
 ▪ operational support for ESA

• Establishing AIUB/DLR SMARTnet telescope network
 ▪ robotic telescopes in Switzerland, South Africa, Australia, …
Summary

>25 years of Space Debris Research in Switzerland

- **Optical survey techniques**
 - Algorithms (detection, survey scenarios)

- **Observations**
 - 18 years of space debris surveys at OGS for ESA
 - Operational, continuous, highly automated observation programs using the Zimmerwald sensors

- **Orbit Catalogues**
 - Orbit determination techniques/software
 - Build–up and maintenance of space debris catalogue (GEO/GTO)
 - International collaboration

- **Physical Characterization**
 - area–to–mass ratio from orbital evolution
 - sizes from photometry
 - attitude motion and shapes from light curves
 - materials from color photometry, spectra

→ Scientific basis for sustainable use of outer space
Thank you for your attention

Thomas Schildknecht
Astronomical Institute
University of Bern (AIUB)
Switzerland

thomas.schildknecht@aiub.unibe.ch