PIONEERING LAST-MILE LOGISTICS IN SPACE

UN COPUOS - The 54th session of the Scientific and Technical Subcommittee

February 2017

ARIE HALSBAND
FOUNDER & CEO

info@effective-space.com

The information contained in this presentation is proprietary of Effective Space Solutions and may not be used, disclosed to any third party, reproduced or transmitted without an expressed permission
WE BELIEVE THAT SPACE IS THE LAST UNTAPPED COMMERCIAL FRONTIER

WE ENVISION A FUTURE WHERE OPERATING A BUSINESS IN SPACE CAN BE AS FRICIONLESS, PROFITABLE AND EFFICIENT AS IT IS ON EARTH
OUR MISSION IS TO BUILD LAST-MILE LOGISTICS SERVICES
THAT WILL POWER THIS NEW ECONOMY
IN SPACE
PHASE ONE ROLLOUT – LIFE-EXTENSION

IN-ORBIT SERVICES OPERATOR

• Providing satellite operators with in-orbit services (life-extension, relocation, deorbiting, orbit and inclination correction, bring-into-use)
• Deploying and operating a fleet of small SPACE DRONE™ spacecrafts with a universal docking system

Team holds decades of small satellite design, program and operations expertise

The information contained in this presentation is proprietary of Effective Space Solutions and may not be used, disclosed to any third party, reproduced or transmitted without an expressed permission.
COMMERCIALY-VIABLE SOLUTION

Safe and cost-driven platform design:

- Small spacecraft (<350Kg)
- Rideshare launch compatible (ESPA-class)
- Orbit-control-only specialized (external “jet-pack”)
- Non-intrusive universal docking system (standard interface ring, (Patent pending) 937/1194/1666)
- >10 years mission life (for a typical ~2000Kg near-EOL satellite)
- Multi-missions reusable (dock/undock, command and control)
RENNEDVOUS AND DOCKING

Designed for simplicity and reliability

- Proven off-the-shelf sensors and hardware
- Approach algorithms are based on space-proven rendezvous
- Simple, non intrusive and redundant docking system

- The only common element to all communication satellites
- Robust attach element (designed to absorb launch loads)

In-house Visual Lab

Standard Satellite to Launcher Interface Ring
THE PROBLEM: SPACE DEBRIS MITIGATION

- Space debris is rapidly increasing the risk of collision for certain LEO orbits
- Without an active debris mitigation plan, another collision is just a matter of time
- Any collision is exponentially increasing the density of space debris
- When reaching a critical density, amount of debris will increase in a “Kessler Syndrome” mode
- It is predicted that this situation will prevent the usage of certain orbits within the near future
- Removal of only 20 high risk objects per year may stabilize the risk from space debris in the most vulnerable orbits
Effective Space developed technology can be easily adopted for space debris active mitigation:
- Object detection
- Line of sight navigation
- Universal docking and grabbing mechanism
- Effectiveness - each SPACE DRONE™ spacecraft carries 3,000,000 kg/m/sec total impulse

Each deorbit from 800km to 300 Km perigee needs ~150m/sec while docked to 1 Ton load. Each Rendezvous and Docking to reach the next target requires about 200m/sec standalone.

Each SPACE DRONE™ spacecraft can perform 12 such deorbit runs equals to the removal of 12 ton of space junk.
SPACE DEBRIS
WHO WILL PAY?

- Advancement in space engineering and availability of sensors and other related technologies allow commercial space debris mitigation

- Currently there is no permanent financing policy and budgets to clean the space from debris. It prevents a commercial “New Space” companies to actively enter to this field based on market investments

- We propose that out of the aggregated space agencies budget, estimated at more than $30B, a permanent contribution of 1% will be devoted to clean the space. This will allow a yearly budget of around $300M that will be diverted into commercial space removal programs

- Such budget will allow “New Space” companies like Effective Space to constantly reduce the space debris into a controlled risk
EARTH SUSTAINABILITY
THE PROBLEM

- Space vehicles and their associated launches are extensive earth resources users, by their huge content of electronics, metals and fuels

- The mining of metals for electronic products is fueling a civil war in Africa that has resulted in the loss of more than five million lives so far. (The Guardian)

- The mining of raw materials for electronic products—including silicon, aluminum, copper, lead, and gold—contributes to increased health problems for workers, Gold mines are the leading source of mercury air pollution in the U.S. (The Guardian)

- In orbit service and particularly life extension of satellites could also serve the goal of earth sustainability
EARTH SUSTAINABILITY

EFFECTIVE SPACE

POTENTIAL CONTRIBUTION

- Each 350 Kg ESS SPACE DRONE™ spacecraft can extend a full communication satellite (4500 Kg at launch) life for 15 years

- One ESS SPACE DRONE™ satellite can typically save 4150 Kg of satellite parts and about 400,000 Kg of launcher parts and fuel
VISION:
MULTI-PURPOSE
SPACE ROBOTIC PLATFORM

Logistics in Space

Fabrication in Space

MEO/LEO Constellations Servicing

Asteroid Mining

The information contained in this presentation is proprietary of Effective Space Solutions and may not be used, disclosed to any third party, reproduced or transmitted without an expressed permission.
THANK YOU FOR YOUR ATTENTION

Visit us at booth #237
March 7-9, 2017
Washington DC

info@effective-space.com

The information contained in this presentation is proprietary of Effective Space Solutions and may not be used, disclosed to any third party, reproduced or transmitted without an expressed permission.