

(An own view of) The Debate on Mars Exploration and Research

Luleå, Sweden, November 14-16, 2019

Topic 1. Where on Mars ?

What are the local resources that we should visit with landed platforms (water? minerals? organics?)? Are there wet markers on Mars? Regions to visit or to avoid?

Mars Exploration Family Portrait

- Scientific objectives

 +
 Engineering/budgets constraints
- Take into account existing missions
- PP special regions

Topic 2. Planetary Protection

Protocols

Should we reinforce/reduce Planetary Protection protocols ? Should we adopt global policies on planetary exploration? What mechanisms?

(28)-0°C?? 300 0.00

Topic 3. Mars Exploration and Research Advantages of Sample Return

International MSR Objectives & Samples Team

Assume: Sample Context Well Documented

Detailed Local Context Regional, **Analytic Data** Planetary Context **INTEGRATE** EXTREMELY important Most Complete to returned sample Science answers science. 6 Pre-Decisional - For planning and discussion purposes only

Do we need more robotic missions before humans are on Mars?

Before Mars Sample Return ? What kind of missions?

What are the scientific goals that justify Mars exploration in the next decades?

Topic 4. Space agencies/government funds vs private initiatives

How the space exploration pie should be divided between Space Agencies and private companies (on planetary protection, resources and exploitation, policies, technologies, UN space treaties, market, return of samples, space junk..)?

Topic 5. Moon and Deep Space Gateway before Mars

Benefits/Dissadvantages:Would that cause a delay to Mars Exploration and Research?

200

Assessment Matrix

What can we observe and visit with a landed platform?

	Liquid Water (incl. brine)	lce	Vapor	Chemistry	Shelter	Exposure
Atmosphere	Not likely	Cloud ice (?)	Track humidity, diurnal/seasonal variations	Detection of trace gases, hard to localize sources	UV flux, radiation detection	Difficult
Sfc/Atm. Boundary	Good, if it exists and right locations are selected. Probably transient	At higher latitudes only	Measure vapor exchange from atm. to surface layer (wind+vapor)	Key questions tied into liquid water search? Difficult to do trace gas flux	UV flux, radiation detection	Difficult
Surface Layer	Less likely below surface	Direct sample of excess ice, ice chemistry	Indirectly through examination of regolith properties (?)	Electrochemistry, spectroscopy, identification of minerals/salts	Change in chemistry with depth (?). Extant life not likely at these depths	Isotopic composition of ice, D/H
Sfc/Subsfc Boundary	Not likely	Ice layer may indicate depth of this boundary	Will not penetrate solid ice. Calculate vapor exchange between atmosphere and subsurface ice layer.	Presence of remnant salt deposits (leaching) from prior climate?	Change in chemistry with depth (?). Extant life not likely at these depths.	Isotopic composition of ice, D/H
Subsurface	Drill, GPR or other sounder	Drilling to depth can expose layers, reveal climate history	Probably of negligible importance.	Change in redox conditions at depth. Perform sample science (spectroscopy, mass spec, EGA) on retrieved samples	Distribution of organics with depth? Core sampling, downhole measurements	Composition of bedrock, can it tell us anything about evolving conditions?

Some general agreement

- We are living the Golden Age of Mars Exploration ad Research
- We should continue visiting Mars, and focus on:
 - studying current conditions on Mars
 - In-Situ Resource Utilization instruments (both Moon and Mars)
- We detect a concern from space agencies about raising expectations for discovery of 'life' and perception of failure if life is not found → Look for biomarkers

If conclusion of life searching mission is that there is no life on Mars, then it is not entirely a negative news because it opens for human exploration

Some disagreements

Should we follow a life detection instead of follow the water aproach?

Are we overprotecting Mars with hard Planetary Protection protocols or is the other way around ?

Topic for UN-COPUOS discussion

PLANETARY PROTECTION

- How can this be regulated in the future ? How things would change if precious metals, rare elements are found on Mars ?
- How to force industry to accomplish with PP protocols ?
- Is there the risk that Private companies will establish themselves in the countries with best return ?

In the case of the Moon:

• We want to avoid contamination of the Moon by, for example, bringing Mars samples for example because if you make a mistake then the moon is contaminated.

PRIVATE COMPANIES

- Companies not represented in iMOST and similar. Maybe they should be.
- Space exploration = booster for technology. One of very few peaceful topics where money is invested without expecting immediate return. Companies have role in helping small countries that can not afford space program on their own. Should UN promote industries as a motor for world equality ?
- Space exploration can be done by analyzing data, does not require actually making the instruments. Enables research from any country.
- Currently some progress and technical information can be shared. However, private companies have other issue: For example a company X will not want to share technical solution with other company.

RESOURCES in SPACE

- How to manage internationally resources in space ?
- Should UN promote private actors for mining resources in space?
- What private companies should UN partner? Quality/ethics/compromise control?
- Resources should not be appropriated as state or industry: how to solve the conflict ?

MARS SAMPLE RETURN

• Curation and examination facilities on Earth, need to be discussed, where, what actions, how will planetary protection be applied. There has to be principles and protocols of use for returned samples. INTERNATIONAL COLLABORATION is needed. Should this be coordinated by UN ?

LIFE on MARS

- If life is detected during the course of a mission, how UN should react ?
- UN agreement for colonies on Moon or Mars? A legislation will be needed, including the case of private companies. Human rights on a colony
- It may be not-ethical but it could be practical to select humans that are less prompt to suffer cancer for instance or get infectious for Moon/Mars colonization ? In general, human factors have to be considered very seriously. Other environments like nuclear power plant, admit to select people to maximize security.

We should not delay actions in Moon/Mars exploration legislation

An example:

Nobody likes planetary protection officers because they are considered like dentists: Consider future goals with regards to PP.... PP can seem inconvenient, it is like brushing teeth – effect is only seen on long term.

Nevertheless PP is probably the only time in human history where precautionary measures have been internationally agreed on.

Special issue on the journal Astrobiology

More information about The Debate: atmospheres.research.ltu.se/mars_debate