Achievements of Hayabusa2: Unveiling the World of Asteroid by Interplanetary Round Trip Technology

Yuichi Tsuda
Project Manager, Hayabusa2
Japan Aerospace Exploration Agency

58th COPUOS, April 23, 2021
Lunar and Planetary Science Missions of Japan

Moon
- 1990 Hiten
- 1998 Nozomi (Mars)
- 2007 Kaguya
- 2010 Akatsuki
- 2018 Mio
- 2010 IKAROS
- SLIM

Planets
- 1980
- 1990
- 2000
- 2010
- 2020 (Future Plan)
- Venus
- Mercury
- Phobos/Mars
- Destiny+
- MMX

Small Bodies
- 1985 Suisei
- 1985 Sakigake
- Comet Halley
- 2003 Hayabusa
- Asteroid Itokawa
- Asteroid Ryugu
- 2014 Hayabusa2
- Comet Pheton

Flyby → Sample Return
Hayabusa2 Mission

✓ Sample return mission to a C-type asteroid “Ryugu”
✓ 5.2 billion km interplanetary journey.

Launch Dec.3, 2014

Earth Gravity Assist Dec.3, 2015

Ryugu Arrival Jun.27, 2018

MINERVA-II-1 Deployment Sep.21, 2018

MASCOT Deployment Oct.3, 2018

MINERVA-II-2 Orbiting Oct.2, 2019

Target Markers Orbiting Sep.16, 2019

First Touchdown Feb.22, 2019

Second Touchdown Jul.11, 2019

Kinetic Impact Apr.5, 2019

Ryugu Departure Nov.13.2019

Earth Return Dec.6, 2020

MINERVA-II-1 Deployment

Target Markers Orbiting

Second Touchdown

Kinetic Impact

First Touchdown

MASCOT Deployment

Earth Return

Ryugu Departure

MINERVA-II-2 Orbiting

Target Markers Orbiting

Second Touchdown

Kinetic Impact

First Touchdown

MASCOT Deployment
Hayabusa2 Spacecraft Overview

Launch Mass: 609kg
Ion Engine: Total $\Delta V=3.2\text{km/s}$, Thrust=5-28mN (variable), Specific Impulse=2800-3000sec. (4 thrusters, mounted on two-axis gimbal)
Chemical RCS: Bi-prop. 20N thrusters $\times 12$ (6 DOF maneuverability)
Solar Array Paddle: $2.6\text{kW} @ 1 \text{a.u.}$
TT&C: X-band Uplink, X/Ka-band Downlink, 8-32Kbps, X/Ka RARR&DDOR capability
International Collaboration in Hayabusa2

200+ Japanese researchers, 100+ international researchers

USA

1. NASA
 - Tracking and navigation support by JPL
 - Asteroid observation
 - Sample exchange with OSIRIS-REx mission

Europe

1. DLR (Germany)
 - Provision of MASCOT Lander
 - Tracking support thr ESA
 - Drop tower experiment

2. CNES (France)
 - Provision of instruments aboard MASCOT

Australia

1. Australian Space Agency (ASA)
 - Landing authorization

2. Department of Defense (DOD)
 - Provision of Landing site
Arrival at Ryugu on June 27, 2018

- **Top shape** with a very circular equatorial bulge
- Spectrum type: Cb
- Diameter: \(\sim 900 \) m
- Mass: \(\sim 450 \) million ton
- Obliquity: \(\sim 8^\circ \)
- Rotation period: \(P = 7.63 \) hours
- Reflectance factor (v-band): 0.02
- Terrain: **Very bumpy**
Accomplishments of Hayabusa2 (1/2)

1. Mobile activity of exploration robots on small body
2. Multiple robots deployment on small body

3. 60cm-accuracy landing and sampling on extra-terrestrial celestial body

image credit: JAXA
Accomplishments of Hayabusa2 (2/2)

4. Artificial crater forming and detailed observation of impact process
5. Multiple landing on extra-terrestrial celestial body
6. Access to subsurface material

7. Smallest-object constellation around extra-terrestrial celestial body

image credit: JAXA
Reentry Terminal Guidance Phase

- 5 TCMs in the last 2 months before Earth return.
- The SRC was separated 12 hrs before reentry.
- The spacecraft diverted from the reentry trajectory 11 hrs before reentry.
Hayabusa2 has returned!

Coober Pedy, Australia, Dec.6, 2020, 2:28:48-2:29:11JST (Altitude 80〜50km)
Sample Return Capsule recovery

Dec.6 (JST)
02:28 SRC reentry
02:32 SRC beacon signal detected
02:54 SRC landed (loss of beacon signal)
04:47 SRC found
08:03 SRC arrived at Quick Look Facility
11:13 Fore-heat shield found
12:31 Aft-heat shield found
Dec.7
22:30 SRC shipped to Japan
Dec.8
11:27 SRC carried into curation facility

57hr! (requirement 100hr)
Ryugu samples found in the sample container!
Sample yield: 5.4g (requirement: 0.1g)
Hayabusa2 Extended Mission

- Multi-swingby + solar electric propulsion
- Pursuing for *Planetary Defense* technologies and sciences
- High speed flyby of asteroid 2001 CC21
- Rendezvous to fast rotator asteroid 1998 KY26
Significance of Hayabusa2

Science

Space Exploration Engineering

Planetary Defense

Planetary Resource

Hayabusa2 is pushing forward the boundaries of small body surface activity

ACCESS / ROVING / SAMPLING / IMPACTING
Launch Mass: About 4,000 kg
Mission Duration: About 5 Years
Launcher: H3 Launch Vehicle
Target Launch Year: JFY2024

The sample return mission from the Martian moon, Phobos
Thank you for your attention