Improving Health Span in Space and on Earth

Prof. Dr. med. Jens Jordan
Institute of Aerospace Medicine, German Aerospace Center and Chair of Aerospace Medicine, University of Cologne, Germany
Environmental Influences on Human Health

Nervous system and behavior
Musculoskeletal system
Metabolism
Cardiovascular system

Cell ↔ Human
Organ ↔ Organ
Space ↔ Earth
Research under space conditions

Improving Health Span in Space and on Earth
Highly controlled environments at :envihab

Highend research ward
Hypobaric chamber
Shortarm centrifuge

3T PET-MR
Physiology module
Psychology module
Brainstem fMRI – interface to environment
Combating muscle and bone wasting

- Microgravity, aging, chronic disease: Muscle and bone wasting
- State-of-the-art human physiology and mathematical modeling yields stimulus-response relationship
 ➢ Rational countermeasures in space and on Earth
Combating muscle and bone wasting

Head-down bedrest as model for weightlessness

Jumps as countermeasure for bone and muscle
Train like an astronaut – pediatric orthopedic and neurologic rehabilitation

Studies in patients provide unique insight in human physiology
Volume shifts in weightlessness

Earth

Space
A patient who cannot stand
Autoimmune autonomic ganglionopathy

Continued symptoms on immunosuppressive therapy (plasma exchange + medications)
Mitigating ocular risks in space
Space associated neuroocular syndrome

- Space associated neuroocular syndrome threatens ocular health
- NASA/DLR bedrest study - 30 days -6° headdown + 0.5% ambient CO₂
- Optical coherence tomography: thickened retinal nerve fiber layer
- Future study: testing hypergravity as SANS countermeasure during bedrest (:envihab centrifuge)
Artificial gravity as countermeasure
Improving Health Span in Space and on Earth

Exploiting gravitation as treatment?

Open angle glaucoma

Acute moutain sickness

+30°
Improving Health Span in Space and on Earth

- Extreme environmental conditions in space:
 - Weightlessness, altered circadian rhythms, confinement, altered atmosphere, radiation, scarce resources
- Physiological changes akin to premature ageing:
 - Muscle/bone loss, cardiovascular deconditioning, radiation damage
- Technology enables novel research methodologies and countermeasures
 ➢ Application on earth to improve healthspan among other societal challenges
The C.R.O.P.® laboratory at DLR
Addressing the liquid manure challenge

• Filter contains natural biofilm for waste degradation
• Urine and liqueide manure as substrate
• Produces fertilizer
• Originally developed for closed loop life support systems in space
• Upscaling for liquid manure disposal