

Additive Manufacturing (AM) for Space (and Earth) Applications

Wolfgang Veith Head of the Product Assurance and Safety Department

Preparatory Meeting for the High Level Forum "Space as a Driver for Socioeconomic Sustainable Development" Vienna, Austria, 19-11-2015

Contact Details: wolfgang.veith@esa.int

European Space Agency

www.esa.int

Additive Manufacturing (3D Printing): the Process CSA

• 3D Printing: building 3D objects adding material layer by layer

Additive Manufacturing (AM)

Market perspectives

- Compound annual growth rate 2013: 44.5 %
- ALM market will quadruple to € 6.8 bn over the next 10 years
- High potential branches:
 Aerospace, turbine industry, med-tech
- **Europe** is **in the lead** within metal ALM
 - But: significant financial means are allocated to AM **outside Europe**:
 - **\$ 1 bn** invested in the US for Additive Layer Manufacturing

Additive Manufacturing (AM) at ESA

- Challenges for Space Materials and Processes:
- 1. Low Mass
- 2. Small Production Series
- 3. Very High Reliability
- 4. Limited Manufacturing Processes
- Why ALM for Space?:
 - 1. Very small series and highly complex geometry (not achievable today with other technologies)
 - Large variety of materials possible: Metals, polymers, composites, ceramics for space but also food (for astronauts), living cells and organs (for telemedicine)
 - 3. Gains in performances with 2 digits => mass saving 40 to 90%, lead time reduced by weeks, suppress complex assemblies and controls
 - Environmentally friendly => excess material is re-used instead of being down-graded through re-cycling
 - 5. Could be used for in-orbit or on other planets
 - 6. Changing the access threshold for space

- 5. Small Geometries
- 6. Very High Performances
- 7. Challenging Material Procurement

A Major Achievement

World's first 3D printed platinum combustion chamber for space applications !!!

Successfully Hot Firing Campaign 5th of May, 2015:

- 1,1 hrs firing time
- 618 ignitions
- 26 thermal cycles
- with a 32 min longest single burn
- highest throat temperature of 1253°C was reached

IWS

ESA UNCLASSIFIED – For Official Use

Priority Goal: AM for Launchers

AM CUBESAT

Objectives:

- Re-design a Cubesat taking full advantage of Additive Manufacturing
- Use the Cubesat as a "low risk" platform for trying verification/qualification routes
- Assess the potential of AM for Cubesat and issue specific design guidelines

AM: Enabling Technology for Future Space Missions

Enabling Industry to maximise benefits of the technology requires:

Reach confidence and quality required for space use
 Change the way we think/work today

AM: Enabling Technology for Future Space Missions

- First Agency in the world having <u>already</u> printed a 1.5 tons Moon base demonstrator using Moon regolith
- Moon Base concept developed based on an inflatable structure and 3D printer shelter
- Current development solar oven
- Further steps definition of all tools/equipment/spare parts to be printed using in-situ resources

AM for New Exploration Mission Approach

ISRU improved - Lunar base concept

On demand production of spare parts and tools in limited resources environment, remotely designed

European Space Agency

AM for New Exploration Mission Approach

Printing of Living Cells, Organs and blood

Printing using in-situ resources and power optimization for Moon, Mars and beyond

Printing of Food

European Strategic Effort on Additive Manufacturing for Space

Aim B: Design

Aim E. Post processing

Aim F. Qualification ..

Aim G: Standardisation

Aim D: processing

Challenges open:

- Massive effort coordinated by ESA
- Addressing all open challenges in a synthetic and coordinated manner without distracting resources
- Final goal: safe and reliable use of 3D printing for space Aim - Material Supply

Aim A: Space Product

Terrestrial AM

End-to-end AM process

European Space Agency

Back to Earth

- Customized, affordable prosthesis, available also in remote areas
- 3D printing for the rapid construction of post-disaster emergency shelters (using local resources and even waste)
- Disrupting the supply chain, having broken parts scanned and printed on-demand and in-situ (also in remote and inaccessible areas with poor supply chain)
- 3D printing of high performances/highly compatible and integrating scaffolds and prosthesis
- 3D printing of on-demand surgical tools in remote areas

European Space Agency

Summary and Next steps – Additive Manufacturing

- Additive Manufacturing is considered a potential game changer and enabling technology for current and future space missions
- Additive Manufacturing lowers the threshold for space access to Small/Medium Enterprises and opens access to high-end technology also to developing countries
- ESA has proposed a strategic roadmap in order to address and solve the presented challenges with a harmonized approach, avoiding distracting European resources and efforts and avoiding the "mushrooming effect"
- **On Earth (and for Earth based applications),** Additive Manufacturing can enable:
 - **Supply chain disruption** (multiple manufacturing plants/steps reduced to one)
 - Manufacturing **on-demand and in-situ on limited resources environment** (also for catastrophes recovery)
 - Competences building in developing countries
 - Education
 - **Optimization of the environmental footprint** (minimizing energy consumption and material waste/ maximizing recyclability)

Future Challenges: Space Debris

- Large number of Cubesats/Spacecraft is expected to be launched in the coming years
- It is unclear if the in-orbit traffic model leading to the 25 years rule for space sustainability is still valid
- ESA is preparing guidelines and practices handbook in order to increase safety and mission success rate

Thank you for your attention!