Time and Coordinate System for
QZSS (Quasi-Zenith Satellite System)
PNT (Positioning, Navigation and Timing service)

4 December 2017
QZS System Services Inc. (QSS)
Contents

1. QZSS PNT Time system (QZSST)
 1-1. Time Transfer Between QZSST and GPST
 1-2. Time Transfer Between QZSST and UTC
2. QZSS PNT Coordinate system
3. Evaluation of Service Data
4. Satellite Information for POD
5. Summary
1. QZSS PNT Time system (QZSST)

- The QZSS (Quasi-Zenith Satellite System) PNT (Positioning, Navigation and Timing service) time system, called “QZSST”, is defined below.

1. **Definitions**
 a. **Length of 1 second**
 The length of 1 second in QZSST shall be identical to the International Atomic Time (TAI).
 b. **Offset between QZSST and TAI**
 QZSST shall be delayed from TAI by 19 seconds.
 c. **Starting point of week number for QZSST**
 The starting point of the week number for QZSST shall be the same as the GPS time system (GPST), which is 0:00 am (UTC) on January 6, 1980.

2. **Navigation message reference time**
 The parameters relating to time such as the SV clock parameter, mean motion and UTC parameters shall all be based on QZSST.
1-1. Time Transfer Between QZSST and GPST (1/2)

- QZSST is almost aligned to GPST so that the difference between QZSST and GPST are nominally within 2ns.

- Figure 1 shows the schematic view of QZSST and GPST.
 ① QZSSRT (QZSS reference time system) is defined by an ensemble average of receiver(*1) clock bias which is constrained to zero on the system equation.
 *1: The QZSS has 4 “time reference monitor stations” which consists of an Atomic Hydrogen Maser.
 ② All satellite and receiver clock bias is corrected by the estimated residual clock bias between QZSSRT and GPST.
 ③ The difference between QZSSRT and GPST becomes almost zero, so the GGTO is broadcast always as zero.
1-1. Time Transfer Between QZSST and GPST(2/2)

Figure 1: Schematic View of QZSST and GPST
1-2. Time Transfer Between QZSST and UTC

- UTC parameter is broadcasted on L1C/A, L1C, L2C and L5.
- Figure 2 shows the schematic view of QZSST and UTC(NICT).

① Each monitor station's clock bias from UTC(NICT) is estimated using GPS common view method.
② So the difference between UTC(NICT) and QZSST can be derived using Monitor station's clock bias from UTC(NICT) and QZSST.

Figure 2: Schematic view of QZSST and UTC(NICT)
2. QZSS PNT Coordinate system

◆ The QZSS/PNT coordinate system (JGS) is defined as follows. Thus the frame uses the IGb08. The difference between ITRF and JGS is nominally within 20mm.

Definitions
The QZSS/PNT coordinate system is the same as the International Terrestrial Reference System (ITRS) stipulated by IERS, and conforms to the International Terrestrial Reference Frame (ITRF).

- **Origin:** Mass center of the earth
- **Z-axis:** the IERS Reference north pole
- **X-axis:** Intersection of the IERS Reference Meridian (IRM) and the equatorial plane
- **Y-axis:** Completes a right-handed, Earth-centered, Earth-Fixed (ECEF) orthogonal coordinate system
3. Evaluation of QZSS/PNT Data (1/2)

- QZSS/PNT is now under trial service.
- GGTO error is within 0.604ns (95%). (Figure 3)
- The evaluated error of “UTC(NICT)-GPST(PNT)” is good relation to “UTC(NICT)-GPST(BIPM).” (Figure 4)

[From 2017/5/18 to 2017/6/22]
3. Evaluation of QZSS/PNT Data (2/2)

- Difference between ITRF and JGS is within 8.4mm (95%). (Figure 5)

![Graph showing the difference between ITRF and JGS from 2017/5/18 to 2017/6/22.](Figure 5: Difference between ITRF and JGS)
4. Satellite Information for POD

Considering ICG WG-D recommendation #23 and IGS White Paper, Satellite Property Information (SPI) and Operational History Information (OHI) for each QZS SV are published on our web-site.

Current status on the SPI and OHI Publication

<table>
<thead>
<tr>
<th>Satellite</th>
<th>SPI</th>
<th>OHI</th>
</tr>
</thead>
<tbody>
<tr>
<td>QZS-1</td>
<td>Published(2017.10.6)</td>
<td>Published(2017.10.6)</td>
</tr>
<tr>
<td>QZS-2</td>
<td>Published(2017.7.4), Updated(2017.11.30)</td>
<td>December, 2017 (Target)</td>
</tr>
<tr>
<td>QZS-3</td>
<td>Published(2017.11.30)</td>
<td>March, 2018 (Target)</td>
</tr>
<tr>
<td>QZS-4</td>
<td>Published(2017.11.30)</td>
<td>March, 2018 (Target)</td>
</tr>
</tbody>
</table>

4. Satellite Information for POD

- Satellite Property Information (SPI)
 - Contents
 1. Reference Frame
 2. Attitude Law
 3. Mass and Center of Mass
 4. Navigation Antenna Phase Center Corrections
 5. Geometry
 6. Satellite dimension
 7. Optical Property
 8. Laser Retro Reflector Location
 9. Differential Code Bias
 10. Antenna Transmit Power

- Current status: In preparation
 - QZS-1 → Not Published
 (The material can’t be obtained any more.)
 - QZS-2 to QZS-4 → Under analysis

- Plan: These information aim at publish on January 2018.
4. Satellite Information for POD

Optical Property

- **Activity Status on Data acquisition of Optical and Thermal property**

<table>
<thead>
<tr>
<th>Property</th>
<th>Acquisition Data</th>
<th>Disclosure/Non-disclosure</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical</td>
<td>Absorption coefficients(Ca) Specular reflectivity(Cs) Diffuse reflectivity(Cd) of each material</td>
<td>Disclosure</td>
<td>Under measuring and analysis (MLI(*2),OSR(*3) and so on)</td>
</tr>
<tr>
<td></td>
<td>BRDF(*1)</td>
<td>Non-disclosure</td>
<td>Scheduled to be measured after acquisition of the above optical property data</td>
</tr>
<tr>
<td>Thermal</td>
<td>Surface temperature</td>
<td>Non-disclosure</td>
<td>Under consideration of possibility of installing sensor necessary for measuring surface temperature on QZS-1R. (infrared camera, temperature sensor and so on)</td>
</tr>
<tr>
<td></td>
<td>Infrared emissivity</td>
<td>Disclosure</td>
<td></td>
</tr>
</tbody>
</table>

*1 : BRDF (Bidirectional Reflectance Distribution Function)
*2 : MLI (Multi Layer Insulation)
*3 : OSR (Optical Solar Reflector)
4. Satellite Information for POD

■ Operational History Information (OHI)

Contents

1. Attitude Change history
 • mode/start・end time
 Since January 2018, the plan and the result information will be included.

2. Orbit maintenance maneuver history (Planned value only)
 • time/duration/delta-V/direction

3. Estimated mass history

Sample

<table>
<thead>
<tr>
<th>date</th>
<th>event</th>
<th>attitude change (±3)</th>
<th>orbit maintenance maneuver</th>
<th>estimated mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mode</td>
<td>start(UT)</td>
<td>stop(UT)</td>
</tr>
<tr>
<td>2011/11/9</td>
<td>orbit maintenance maneuver(±1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012/1/4</td>
<td>unloading</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012/3/3</td>
<td>change of attitude mode</td>
<td>YS→ON</td>
<td>954</td>
<td></td>
</tr>
<tr>
<td>2012/3/7</td>
<td>unloading</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012/4/16</td>
<td>change of attitude mode</td>
<td>ON→YS</td>
<td>739</td>
<td></td>
</tr>
<tr>
<td>2012/5/2</td>
<td>orbit maintenance maneuver(±1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. Summary

- Definition of QZSS/PNT’s time system (QZSST) and coordinate system (JGS) was explained.
 - QZSST is nominally aligned to GPST within 2ns.
 - JGS is nominally aligned to ITRF within 20mm.

- QZSS/PNT started trial service from March 28th 2017, and these system errors are well sustained within target values.

- Web-site of QZSS Satellite information for Precise Orbit Determination is introduced.
Thank you for your attention.

For more information, please visit our web site
http://qzss.go.jp/en/
- A large circle illustrated “Q” as Quasi–Zenith Satellite System
- Green and blue circle composes 8 shapes; the coverage area of QZSS and they are represented earth and satellite.
- Blue line symbolized precise positioning information as well as enlargement of brand new service to society.
- Color of green stands for environment and safety, and blue stands for space and technology.
Backup: Satellites system

4-Satellite Constellation;
3 QZ Orbit, 1 Geostationary Orbit

Japan Region
- Over 20 degrees elevation
 More than 2 QZS are available
- Over 60 degrees elevation
 1 QZS is available

1 Geostationary satellite
Backup: QZSS Monitor Stations in the World

- 25 monitor stations for POD of both QZSS and GPS satellites.
- Time reference stations are Kobe, Miyako Is, Darwin and Brisbane.