

Introduction to GNSS Base-Station

Dinesh Manandhar

Center for Spatial Information Science

The University of Tokyo

Contact Information: <u>dinesh@iis.u-tokyo.ac.jp</u>

- GPS or GNSS observation has many types of errors. Due to these errors, the accuracy of a GPS receiver is limited. Currently about 10m accuracy is possible with Single Observation.
- However, <u>some of these errors can be removed and reduced by using proper</u> <u>observation techniques</u> to provide few millimeter accuracy. This can be done by using a Base-Station within a limited base-length from the Rover (user) receiver.
- In the next few slides, we will see types of errors and how they can be removed.

- A Base-Station is a station where a GNSS receiver is installed at a known location.
 - Also called Reference Station
 - CORS (Continuously Operating Reference Station)
- The location is pre-surveyed by either traditional methods or by GNSS observation for multiple days.
- The Base-station then provides error data for every observation compared to it's known location.

Accuracy vs. Precision

- Accuracy
 - Capable of providing a correct measurement
 - Measurement is compared with true value
 - Affected by systematic error
- Precision
 - Capable of providing repeatable and reliable measurement
 - Statistical analysis of measurement provides the precision
 - Measure of random error
 - Systematic error has no effect

Image: state of the state

Training on GNSS – Course (T141-30), Organized by: GIC/AIT, S4D/CSIS and ICG, held at: GIC/AIT, Thailand from 23 – 26 JAN 2018 Dinesh Manandhar, CSIS, The University of Tokyo, dinesh@iis.u-tokyo.ac.jp

International Committee on Global Navigation Satellite Systems

How accurate is GPS Position?

Errors in GPS Observation (L1C/A Signal)

Error Sources	One-Sigma Error , m		Comments
	Total	DGPS	Comments
Satellite Orbit	2.1	0.0	Common errors are
Satellite Clock	2.1	0.0	removed
Ionosphere Error	4.0	0.4	Common errors are reduced
Troposphere Error	0.7	0.2	
Multipath	1.4	1.4	
Receiver Circuits	0.5	0.5	

If we can remove common errors, position accuracy can be increased.

Common errors are: Satellite Orbit Errors, Clock Errors and Atmospheric Errors (within few km)

Table Source : http://www.edu-observatory.org/gps/gps_accuracy.html#Multipath

How to Remove the Errors?

- Averaging of Repeated Observation
- Modeling of Phenomena that Causes Errors
- Differential Corrections
 - DGPS, SBAS, GBAS
 - Single frequency observation is OK
 - Code Observation
 - RTK
 - Normally multi-frequency observations
 - Single frequency RTK is also performed for smaller base-length
 - Code and Carrier Observation
- PPP
 - Precise Point Positioning

Principle of Differential Correction

Training on GNSS – Course (T141-30), Organized by: GIC/AIT, S4D/CSIS and ICG, held at: GIC/AIT, Thailand from 23 – 26 JAN 2018 Dinesh Manandhar, CSIS, The University of Tokyo, dinesh@iis.u-tokyo.ac.jp

Principle of QZSS MADOCA / CLAS Service

Which Method: DGPS, SBAS, RTK, PPP?

Training on GNSS – Course (T141-30), Organized by: GIC/AIT, S4D/CSIS and ICG, held at: GIC/AIT, Thailand from 23 – 26 JAN 2018

Dinesh Manandhar, CSIS, The University of Tokyo, dinesh@iis.u-tokyo.ac.jp