

Introduction to Global Navigation Satellite System (GNSS) Module: 1

Dinesh Manandhar

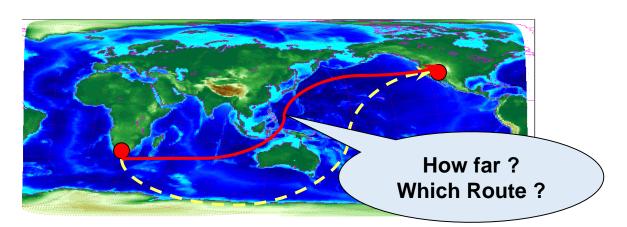
Center for Spatial Information Science

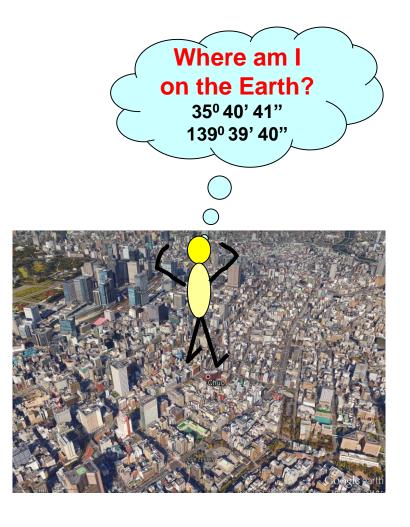
The University of Tokyo

Contact Information: dinesh@iis.u-tokyo.ac.jp

Module 1: Course Contents

- Introduction
- How GPS Works?
- GPS Signal Structure
- GNSS Systems
 - GPS
 - GLONASS
 - GALILEO
 - BEIDOU
 - QZSS
 - IRNSS
- SBAS
- Multi-GNSS





Fundamental Problem

- How to know my location precisely?
 - In any condition
 - At any time
 - Everywhere on earth (at least outdoors!)
- How to navigate to the destination? ?
 - Guidance or Navigation

Navigation Types

- Landmark-based Navigation
 - Stones, Trees, Monuments
 - Limited Local use
- Celestial-based Navigation
 - Stars, Moon
 - Complicated, Works only at Clear Night
- Sensors-based Navigation
 - Dead Reckoning
 - Gyroscope, Accelerometer, Compass, Odometer
 - Complicated, Errors accumulate quickly

- Radio-based Navigation
 - LORAN, OMEGA
 - Subject to Radio Interference, Jamming, Limited Coverage
- Satellite-based Navigation or GNSS
 - TRANSIT, GPS, GLONASS, GALILEO, QZSS, BEIDOU (COMPASS), IRNSS
 - Global, Difficult to Interfere or Jam, High Accuracy & Reliability

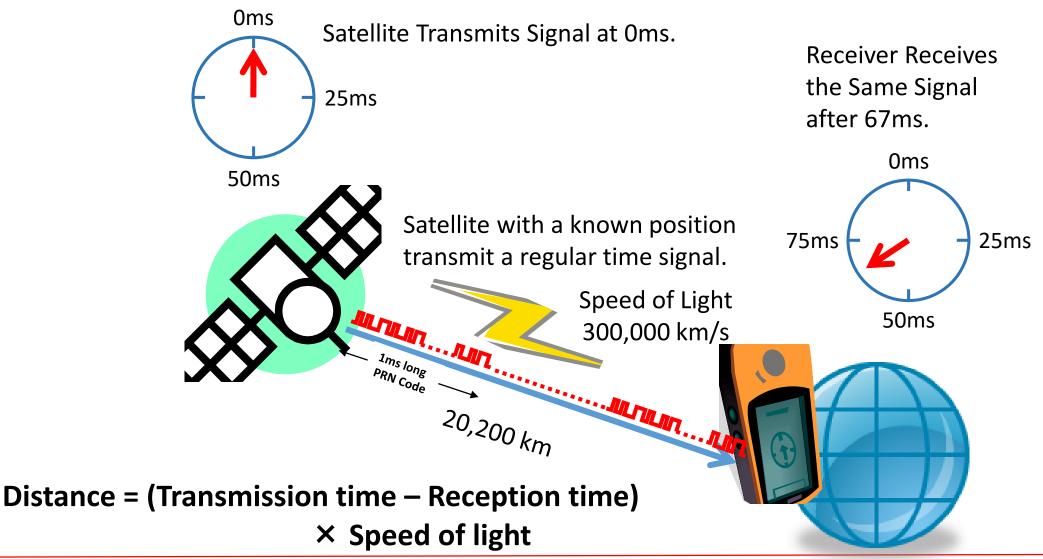
What is GNSS?

Global Navigation Satellite System (GNSS) is the standard generic term for all navigation satellites systems like GPS, GLONASS, GALILEO, BeiDou, QZSS, NAVIC.

- Global Constellation
 - GPS USA
 - GLONASS, Russia
 - Galileo, Europe
 - BeiDou (COMPASS), China

- Regional Constellation
 - QZSS, Japan
 - NAVIC (IRNSS), India

Satellite Based Augmentation System (SBAS)


- Satellite Based Augmentation System (SBAS) are used to augment GNSS Data
 - Provide Higher Accuracy, Integrity, Continuity and Availability
 - Some correction data like satellite orbit, satellite clock and atmospheric data are broadcasted from communication satellites
 - Used by ICAO for Aviation
- Different Types of SBAS
 - WAAS, USA
 - MSAS, Japan
 - EGNOS, Europe
 - GAGAN, India
 - SDCM, Russia

Determine the Distance using Radio Wave

GNSS Requirements

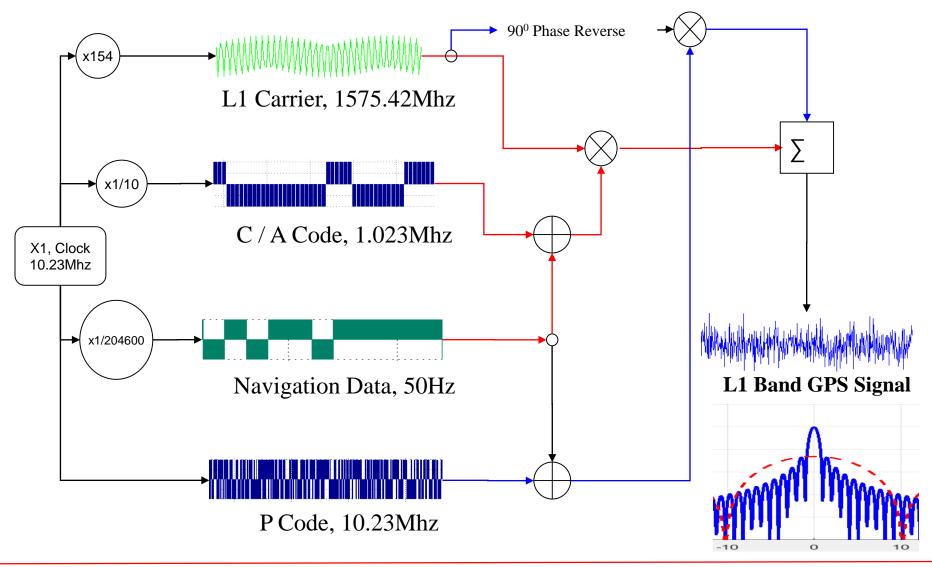
- GNSS needs a common time system.
 - Each GNSS satellite has atomic clocks.
 - How about user receivers?
- The signal transmission time has to be measurable.
 - Each GNSS satellite transmits a unique digital signature, which consists an apparent random sequence
 - A Time Reference is transmitted using the Navigation Message
- Each signal source has to be distinguishable.
 - GNSS utilizes code division multiple access (CDMA) or frequency division multiple access (FDMA).
- The position of each signal source must be known.
 - Each satellite sends its orbit data using the Navigation Message
 - Orbit Data: Almanac and Ephemeris

Characteristics of GNSS Signals

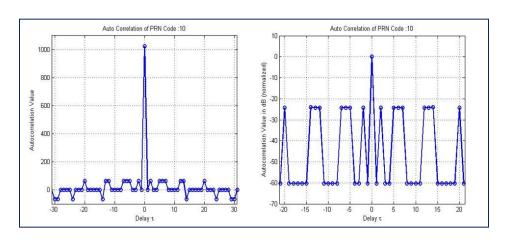
- GNSS Signals have basically three types of signals
 - Carrier Signal
 - PRN Code (C/A Code)
 - Navigation Data
- All GNSS Signals except GLONASS are based on CDMA
 - Only GLONASS use FDMA
 - Future Signals of GLONASS will also use CDMA
- The modulation scheme of GNSS signals are BPSK and various versions of BOC

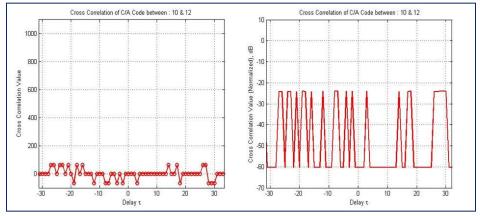
CDMA: Code Division Multiple Access FDMA: Frequency Division Multiple Access

BPSK : Binary Phase Shift Keying


BOC: Binary Offset Carrier

GPS Signal Structure





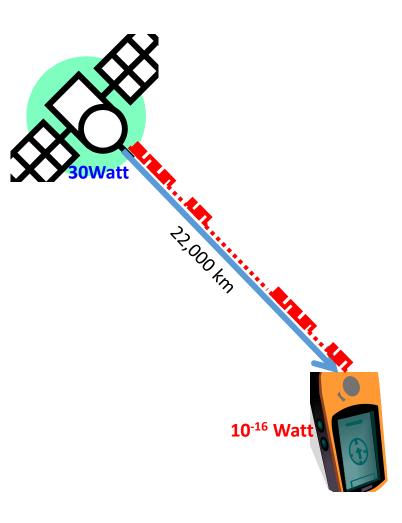
Characteristics of PRN Code

Auto-correlation: Only four values: 1023, 1, 63 or 65 (Ideal case)

Cross-correlation: Only three values: 1, 63 or 65 (Ideal Case)

- PRN codes are very uniquely designed.
- GPS and other GNSS use CDMA
 - One PRN code is assigned to one satellite.
 - In case of GPS, PRN code is 1023 bits long.
 - GLONASS is different. It uses FDMA. The same code for all satellites but different frequencies.
 - Some new signals of GLONASS also uses CDMA signals

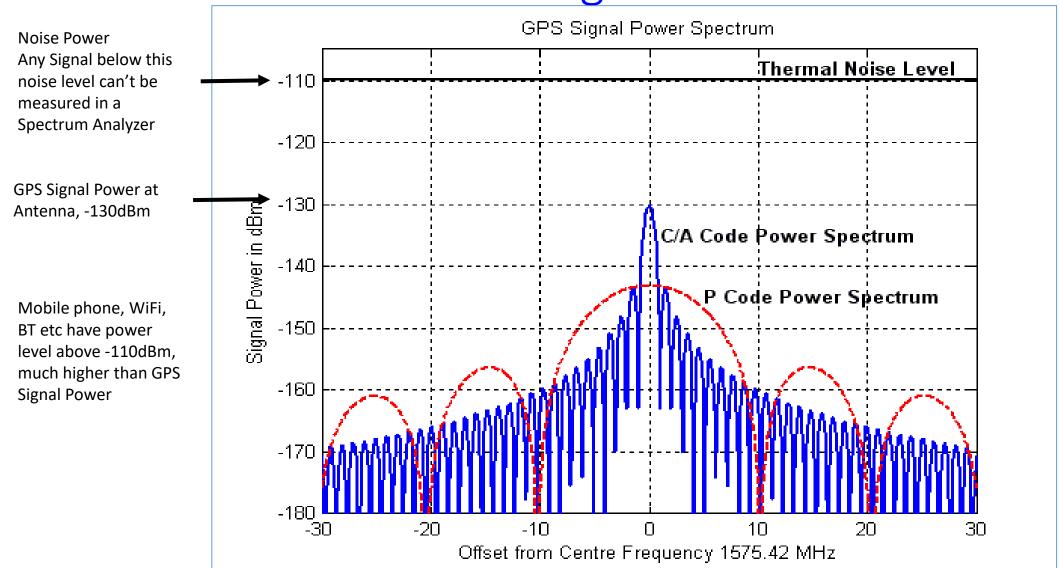
- Maximum Cross-correlation Value is -23dB.
- If any signal above this power enters a GPS receiver, it will totally block all GPS signals.
- If longer PRN code is used, receiver becomes more resistive to Jamming signal
 - But, signal processing is more complex



GPS Signal Power: How Strong or How Weak?

- GPS satellites are about 22,000km away
- Transmit power is about 30W
- This power when received at the receiver is reduced by 10¹⁶ times.
 - The power reduces by 1/distance²
 - This is similar to seeing a 30W bulb 22,000Km far
- GPS signals in the receiver is about 10⁻¹⁶ Watt, which is below the thermal noise

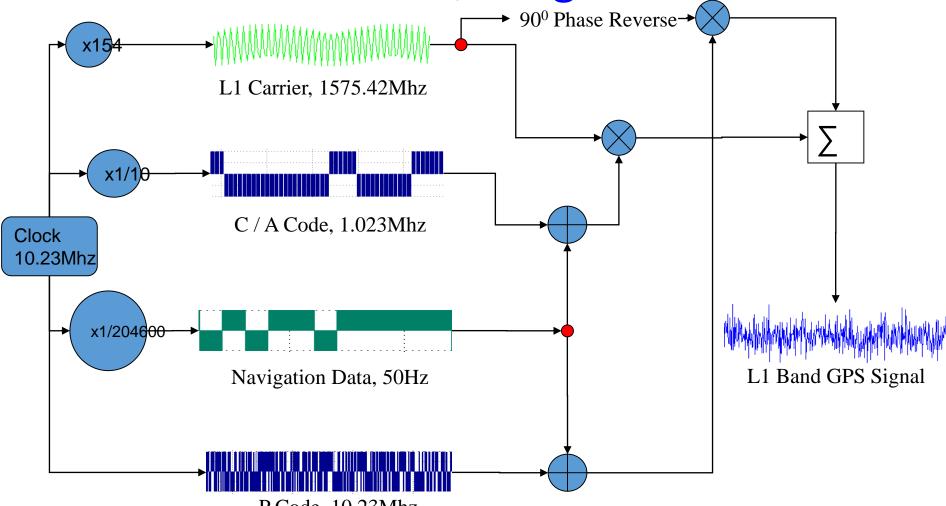
GPS Signal Power: How Strong or How Weak?


- GPS Signal Power at Receiver
 - -130dBm or -160dBW
- Thermal Noise Power
 - Defined by $kT_{eff}B$, where
 - $K = 1.380658e-23JK^{-1}$, Boltzman Constant
 - $T_{eff} = 362.95$, for Room temperature in Kelvin at 290
 - Teff is effective Temperature based on Frii's formula
 - *B* = 2.046MHz, Signal bandwidth
 - Thermal Noise Power = -110dBm for 2MHz bandwidth
 - If Bandwidth is narrow, 50Hz
 - Noise Power = -156dBm

GPS Signal Power

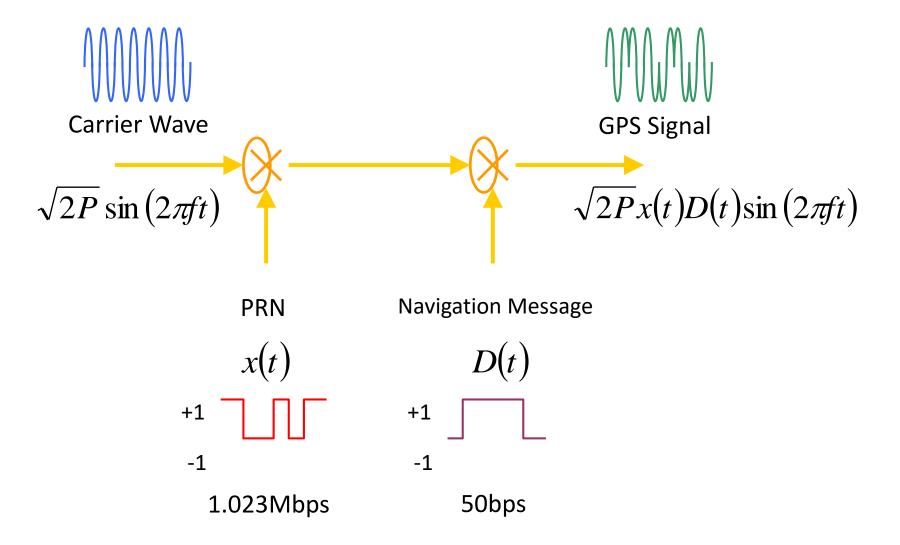
Power of GPS Signal vs. Other Signals

	Signal Type	Power (based on calculations, not measur				
		Watt	dBW	dBm		
Below Noise Above Noise	Mobile Phone Handset TX Power *	1W	OdBW	30dBm		
	RX Power at Mobile Phone Handset*	100e-6W	-40dBW	-70dBm		
	ZigBee	316e-16W	-115dBW	-85dBm		
	VHF	200e-16W	-137dBW	-107dBm		
	Thermal Noise	79e-16W	-141dBW	-111dBm		
	GPS**	1e-16W	-160dBW	-130dBm		
Belo						

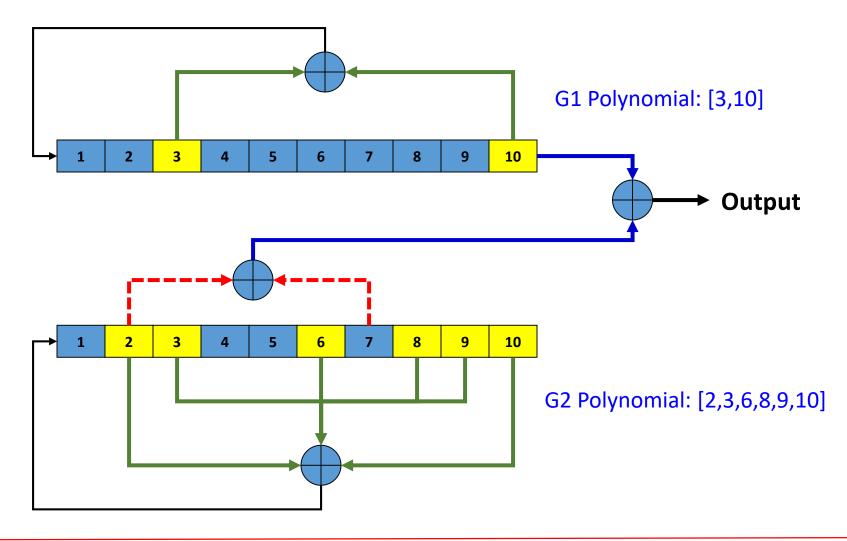

- * Actual power values will differ. These are just for comparison purpose
- ** GPS Signals are hidden under the noise. Thus, it can't be measured directly e.g. using a Spectrum Analyzer

Method of GPS L1C/A Signal Generation

P Code, 10.23Mhz


$$s_i(t) = \sqrt{2P_i(t)} \cdot CA(t - \tau_i(t)) \cdot D(t - \tau_i(t)) \cdot \cos(2\pi(f_L + \delta f_{L,i}(t))t + \phi_i(t)) + n_i(t)$$

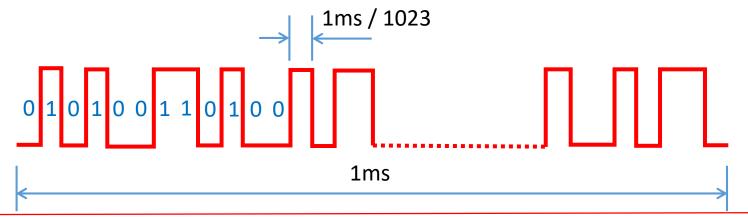
GPS signal structure



GPS L1C/A PRN Code Generator

CDMA vs. FDMA

	CDMA [GPS, QZSS, Galileo, BeiDou, IRNSS, Future GLONASS Satellites]	FDMA [GLONASS]	
PRN Code	Different PRN Code for each satellite Satellites are identified by PRN Code	One PRN Code for all satellites Satellites are identified by center frequency	
Frequency	One Frequency for all satellites	Different frequency for each satellite	
Merits & Demerits	Receiver design is simpler No Inter-Channel Bias More susceptible to Jamming	Receiver design is complex Inter-channel bias problem Less susceptible to Jamming	

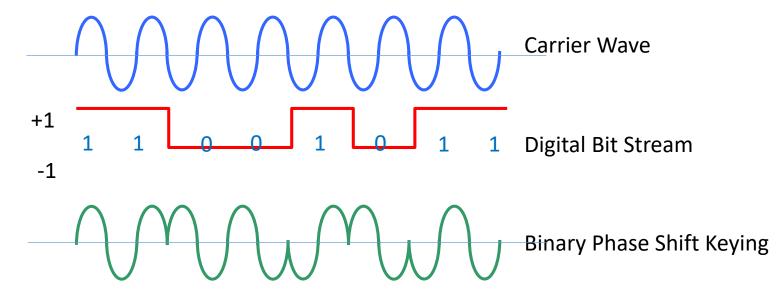


PRN (Pseudo Random Noise) Code

- PRN Code is a sequence of randomly distributed zeros and ones that is one millisecond long.
 - This random distribution follows a specific code generation pattern called Gold Code.
 - There are 1023 zeros or ones in one millisecond.
- Each GPS satellite transmits a unique PRN Code.
 - GPS receiver identifies satellites by its unique PRN code or ID.
- It is continually repeated every millisecond and serves for signal transit time measurement.
 - The receiver can measure where the PRN code terminated or repeated.

Modulation

Modulation is the process of conveying a message signal, for example a digital bit stream, into a radio frequency signal that can be physically transmitted.

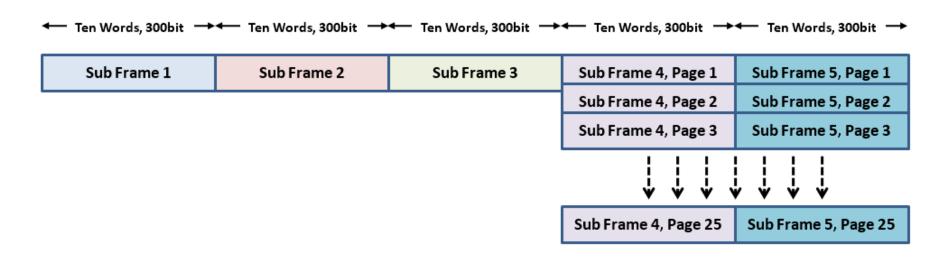


BPSK (Binary Phase Shift Keying)

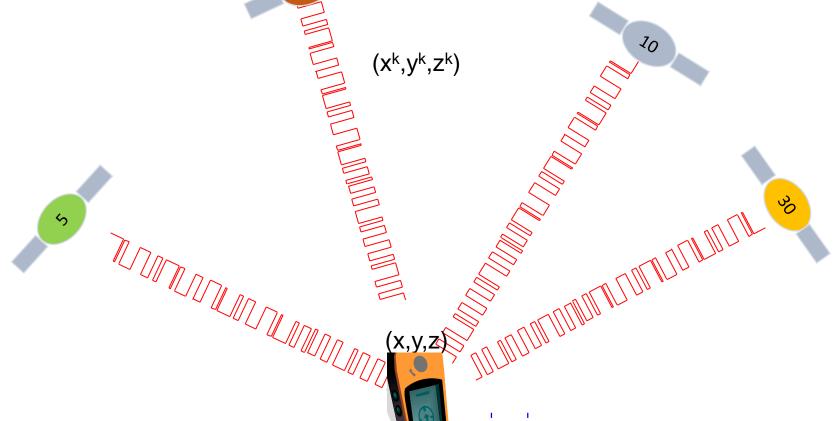
Phase shift keying is a digital modulation scheme that conveys data by changing, or modulating, the phase of the carrier wave. BPSK uses two phases which are separated by a half

cycle.

Navigation Data


- Navigation Data or Message is a continuous stream of digital data transmitted at 50 bit per second. Each satellite broadcasts the following information to users.
 - Its own highly accurate orbit and clock correction (ephemeris)
 - Approximate orbital correction for all other satellites (almanac)
 - System health, etc.

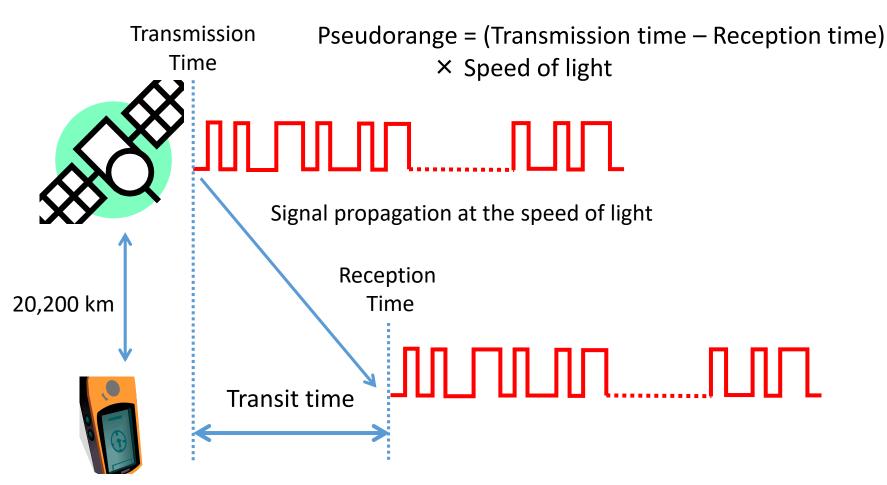
GPS L1C/A Signal NAV MSG



Principle of Satalite-based Navigation

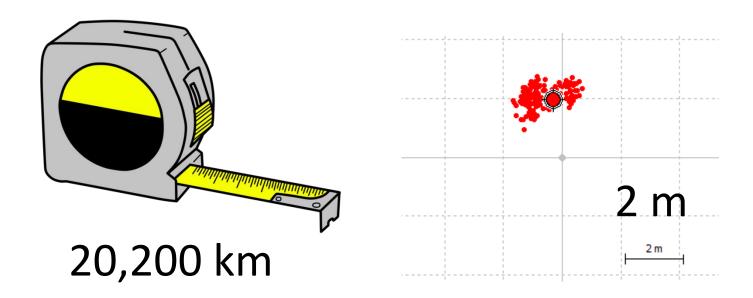
$$\rho^{k} = \sqrt{(x^{k} - x)^{2} + (y^{k} - y)^{2} + (z^{k} - z)^{2}} -$$

If $k \ge 4$, solve for x, y, z and clock bias, b


Correlation between Incoming Signal and Receiver Generated Signal

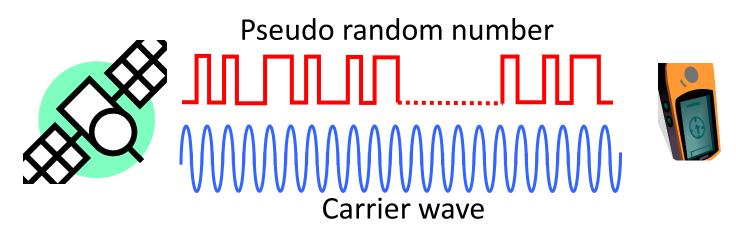
Pseudorange (1/2)

A GPS receiver measures the signal transmission time from the code phase at signal reception time.



Pseudorange (2/2)

- Essential GNSS observable
- Full distance between the satellite and the receiver
- Provides a position accuracy of approximately a few meters



Carrier phase (1/2)

- PRN repeats every 1ms, which corresponds 300 km in distance at the speed of light, but pseudorange accuracy is about 1 m.
- Carrier phase provides millimeter range accuracy, but repeats every cycle, which correspond 19 cm in distance at a GPS signal carrier frequency of 1575.42 MHz.

Carrier phase (2/2)

- Fractional carrier phase of the received signal
- Therefore there is an unknown integer number of full carrier cycles between the satellite and the receiver
- Provide "survey-grade" accuracy of 1-2 cm once the unknown number of full carrier cycles are resolved

GPS (Global Positioning System) USA

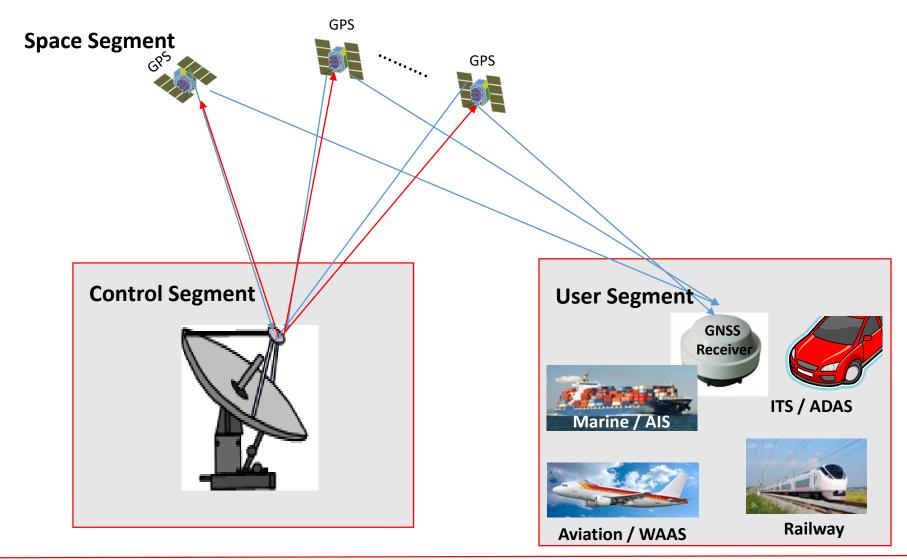
History of GPS (1/2)

- Originally designed for military applications at the height of the Cold War in the 1960s, with inspiration coming from the launch of the Soviet spacecraft Sputnik in 1957.
- Transit was the first satellite system launched by the United States and tested by the US Navy in 1960.
 - Just five satellites orbiting the earth allowed ships to fix their position on the seas once every hour.
- GPS developed quickly for military purposes thereafter with a total of 11 "Block" satellites being launched between 1978 and 1985.
- The Reagan Administration in the us had the incentive to open up GPS for civilian applications in 1983.

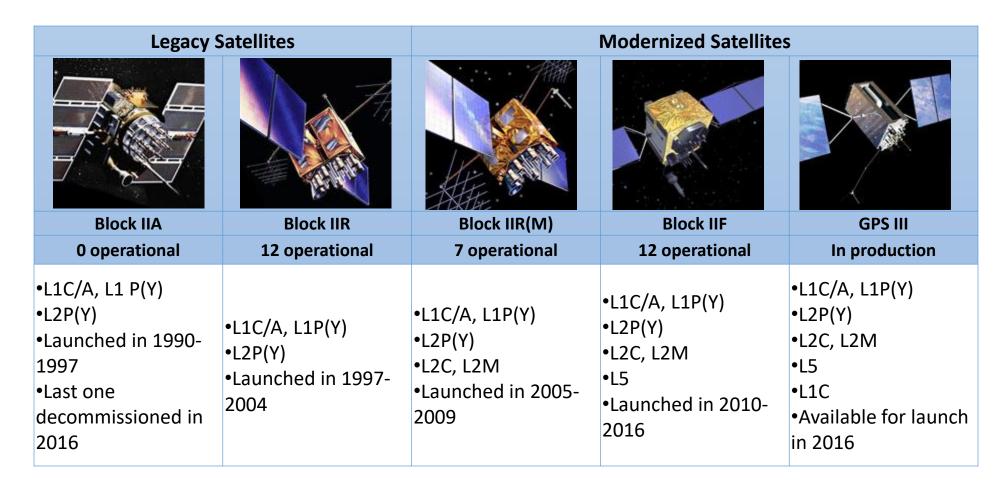
How to Drop Five Bombs from Different Aircrafts into the Same Hole?

<u>(with an accuracy of 10m)</u>

History of GPS (2/2)


- Upgrading the GPS was delayed by NASA space shuttle Challenger disaster in 1989 and it was not until 1989 that the first Block II satellites were launched.
- By the summer of 1993, the US launched the 24th GPS satellite into orbit, which complete the modern GPS constellation of satellites.
- In 1995, it was declared fully operational.
- Today's GPS constellation has around 30 active satellites.
- GPS is used for dozens of navigation applications.
 - Route finding for driver, map-making, earthquake research, climate studies, and many other location based services.

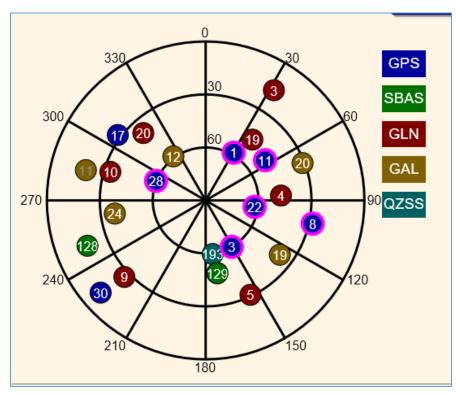
GPS Segments



GPS Space Segment: Current & Future Constellation

http://www.gps.gov/systems/gps/space/#IIF https://en.wikipedia.org/wiki/Global Positioning System

GPS Signals


Band	Frequency, MHz	Signal Type	Code Length msec	Chip Rate, MHz	Modulation Type	Data / Symbol Rate, bps/sps	Notes
	1575.42	C/A	1	1.023	BPSK	50	Legacy Signal
L1		C_Data	10	1.023	BOC(1,1)	50 / 100	From 2014
LI		C_{Pilot}	10	1.023	ТМВОС	No Data	BOC(1,1) & BOC(6,1)
		P(Y)	7 days	10.23	BPSK		Restricted
	1227.60	CM	20	0.5115	BPSK	25 / 50	Modulated by TDM of (L2CM xor Data) and L2CL
L2		CL	1500	0.5115		No Data	
		P(Y)	7days	10.23	BPSK		
L5	1176.45	I	1	10.23	BPSK	50 / 100	Provides Higher Accuracy
LJ		Q	1			No Data	

GPS Receiver Outputs (1/3)

Sky Plot: Visibility of Satellites at Receiver Antenna

Computed Position from GPS displayed over Google Map

Slide: 37

GPS Receiver Outputs (2/3) GNSS Signals Received by the Receiver

ALI	ALL GPS GLONASS Galileo QZSS SBAS			OMNI										
sv	Туре	Elev. [Deg]	Azim. [Deg]	L1-C/No [dBHz]	L1	L2-C/No [dBHz]	L2	L5-C/No [dBHz]	L5	E6-C/No [dBHz]	E 6	IODE	URA [m]	Туре
1	GPS	57.51	31.89	42.7	CA	26.4/42.8	E/CM+CL	-	-	-	-	17	2	IIF
3	GPS	61.11	148.93	43.4	CA	27.4/43.9	E/CM+CL	-	-	-	-	17	2	IIF
8	GPS	26.97	103.42	37.3	CA	16.9/36.6	E/CM+CL	-	-	-	-	59	2	IIF
11	GPS	48.36	57.30	41.4	CA	22.3	Е	-	-	-	-	83	4	IIR
17	GPS	28.92	307.48	37.9	CA	19.3/37.5	E/CM+CL	-	-	-	-	41	2	IIR-M
22	GPS	61.99	94.37	43.9	CA	26.8	Е	-	-	-	-	49	2	IIR
28	GPS	60.44	288.95	43.0	CA	25.3	Е	-	-	-	-	53	2.8	IIR
11	Galileo	20.59	285.13	-	-	-	-	-	-	-	-	-	-	-
12	Galileo	59.51	325.63	41.5	CBOC	-	-	-/40.6/40.2	-/B/Alt	-	-	-	-	-
19	Galileo	38.81	125.12	37.7	CBOC	-	-	-/33.8/33.3	-/B/Alt	-	-	-	-	-
20	Galileo	31.05	67.70	33.9	CBOC	-	-	-	-	-	-	-	-	-
24	Galileo	37.41	260.41	40.9	CBOC	-	-	-/40.2/39.9	-/B/Alt	-	-	-	-	-
3	GLONASS	15.60	30.81	33.7/32.3	CA/P	32.3	CA	-	-	-	-	29	2.5	М
4	GLONASS	47.52	83.80	40.5/39.4	CA/P	38.1	CA	-	-	-	-	29	7	М
5	GLONASS	32.37	153.94	32.3/31.0	CA/P	31.0	CA	-	-	-	-	29	2.5	М
9	GLONASS	25.40	225.73	35.6/34.4	CA/P	36.4	CA	-	-	-	-	29	10	М
10	GLONASS	33.33	284.69	39.0/37.6	CA/P	30.9	CA	-	-	-	-	29	4	М
19	GLONASS	46.12	39.85	37.1/35.9	CA/P	36.9	CA	-	-	-	-	29	4	М
20	GLONASS	38.75	318.99	33.0/30.7	CA/P	37.4	CA	-	-	-	-	29	10	М
193	QZSS	59.95	172.80	40.9/42.0/40.7	CA/BOC/SAIF	40.4	CM+CL	-	-	29.2	LEX	212	2	-
128	SBAS	18.24	249.03	32.4	CA	-	-	-	-	-	-	158	4096	-
129	SBAS	48.27	170.87	34.3	CA	-	-	-	-	-	-	124	4096	-
137	SBAS	48.27	170.87	34.1	CA	-	-	-	-	-	-	46	16	-
140	SBAS	-45.00	0.00	35.5	CA	-	-	-	-	-	-	55	N/A	-
141	SBAS	-45.00	0.00	-	-	-	-	-	-	-	-	-	-	-

GPS Receiver Outputs (3/3) Position, Velocity, Time (PVT) and Other Observation Related Outputs

Position:

Lat: 35° 39' 40.85496" N
Lon: 139° 40' 41.32632" E
Hgt: 118.521 [m]
Type: Autonomous
Datum: WGS-84

Velocity:

East: 0.01 [m/s] North: -0.01 [m/s] Up: -0.02 [m/s]

Position Solution Detail:

Position Dimension: 3D
Augmentation: GPS+GLN+GAL+QZSS
Height Mode: Normal
Correction Controls: Off

Satellites Used:19

GPS(7): 1, 3, 8, 11, 17, 22, 28 GLONASS(8): 3, 4, 5, 9, 10, 11, 19, 20 Galileo(3): 12, 19, 24 QZSS(1): 193

Satellites Tracked:23

GPS (7): 1, 3, 8, 11, 17, 22, 28 GLONASS (8): 3, 4, 5, 9, 10, 11, 19, 20 Galileo (4): 12, 19, 20, 24 SBAS (3): 128, 137, 140 QZSS (1): 193

Receiver Clock:

GPS Week: 1910
GPS Seconds: 447816
Offset: 0.00001 [msec]
Drift: 0.00007 [ppm]

Multi-System Clock Offsets:

Master Clock System: GPS
GLONASS Offset: 97.2 [ns]
Galileo Offset: 0.5 [ns]
GLONASS Drift: -0.044 [ns/s]
Galileo Drift: 0.003 [ns/s]

Dilutions of Precision:

PDOP: 1.5 HDOP: 0.7 VDOP: 1.3 TDOP: 1.1

Error Estimates(1σ):

East: 0.878 [m]
North: 1.123 [m]
Up: 2.691 [m]
Semi Major Axis: 1.155 [m]
Semi Minor Axis: 0.834 [m]
Orientation: 19.9°

GLONASS (Global Navigation Satellite System) Russia

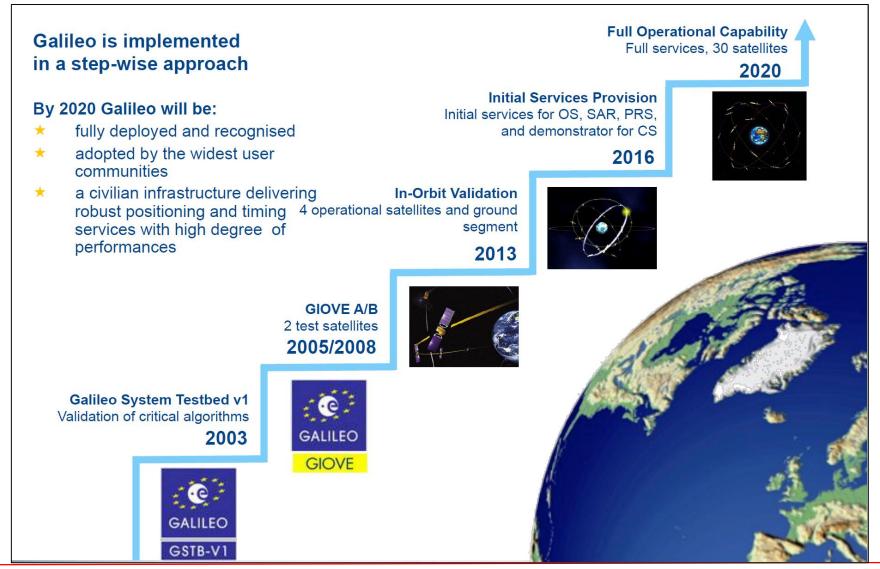
GLONASS Current & Future Constellation

1982 First Launch	2003	2011	Planned Launch	
GLONASS	GLONASS-M	GLONASS-K1	GLONASS-K2	
DECOMMISSIONED 87 Launched 0 Operational 81 Retired 6 Lost	Under Normal Operation 45 Launched 27 Operational 12 Retired 6 Lost	Under Production / Operation 2 Launched 2 Operational First launch Dec 2014	Under Development 3 On Order First Launch Expected 2018	
•L10F, L1SF • L2SF	L1OF, L1SFL2OF, L2SFL3OC	•L1OF, L1SF •L2OF, L2SF •L3OC	•L10F, L1SF •L20F, L2SF •L10C, L1SC •L20C, L2SC •L30C	

GLONASS space segment STATUS & MODERNIZATION, Joint - Stock Company «Academician M.F. Reshetnev» Information Satellite Systems» ICG-7, November 04-09, 2012, Beijing, China, https://en.wikipedia.org/wiki/GLONASS-K2

GLONASS FDMA Signals

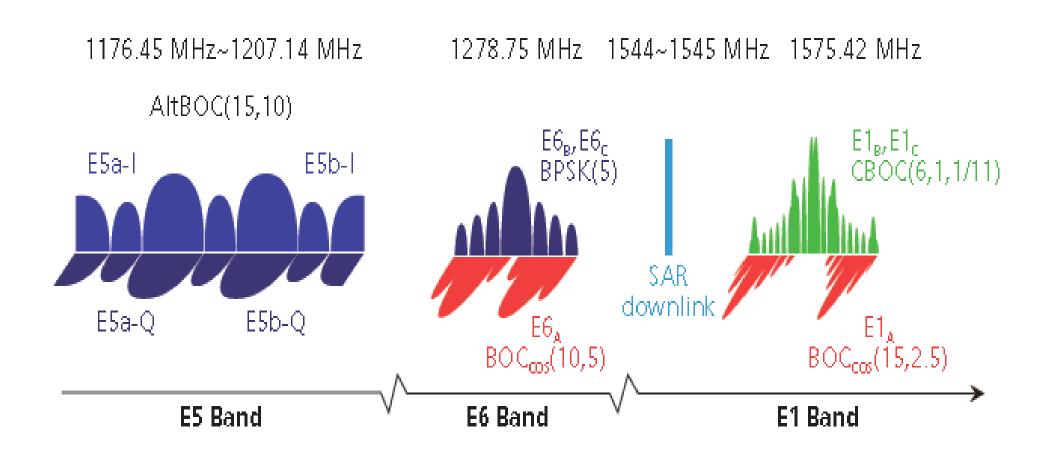
- L1 Band 1598.0625 1604.40 MHz
 - 1602 MHz + $n \times 0.5625$ MHz
 - where n is a satellite's frequency channel number (n=-7,-6,-5,...,7).
- L2 Band 1242.9375 1248.63 MHz
 - 1246 MHz + $n \times 0.4375$ MHz


Galileo, Europe

Galileo Space Segment

Galileo Signals

Band	Frequenc y, MHz	Signal Type	Code Length msec	Chip Rate, MHz	Modulation Type	Data / Symbol Rate, bps/sps	Notes	
		Α	10	10.23	BOC(15,2.5)	??	Restricted	
E1	1575.42	B_{Data}	4	1.023	CBOC, Weighted	125 / 250	Data	
			100	1.023	combination of BOC(1,1) & BOC(6,1)	No Data	Pilot	
		Α	10	5.115	BOC(15,5)	??	PRS	
E6	1278.75	В	1	5.115	BPSK(5)	500 / 1000	Data	
		С	100	5.115		No Data	Pilot	
	4476 45	A-I	20	10.23		25 / 50	Data	
E5 1191	1176.45	A-Q	100	10.23		No Data	Pilot	
.795 MHz	1207.14	B-I	4	10.23	AltBOC(15,10)	125 / 250	Data	
T	1207.14	B-Q	100	10.23	vyo, dinach@iis y talaya as in	No Data	Pilot	


Slide: 44

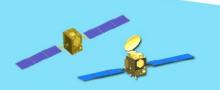
Galileo Signals

Galileo Services

	Open Service (OS)	Freely accessible service for positioning, navigation and timing for mass market	
	Commercial Service (CS)	Delivers authentication, high accuracy and guaranteed services for commercial applications	THE REAL PROPERTY.
	Public Regulated Service (PRS)	Encrypted service designed for greater robustness in challenging environments	
	Search And Rescue Service (SAR)	Locates distress beacons and confirms that message is received	
_	Safety of Life Service (SoL)	The former Safety of Life service is being re-profiled	

Slide: 46

BeiDou, China



BeiDou Space Segment

Space Segment

• 5 GEO satellites

3 IGSO satellites

27 MEO satellites

Ground Segment

Master Control Stations (MCS)

- Uplink Stations (US)
- Monitoring Stations (MS)
- BeiDou terminals
- Terminals compatible with other navigation satellite systems

Four types of services:

open, authorized, differential augmentation, and short message

services.

The nominal positioning accuracy is better than 10 m, timing and velocity accuracy is better than 20 ns and 0.2 m/s respectively.

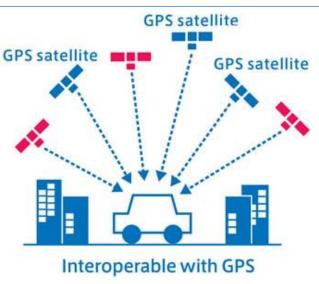
User Segment

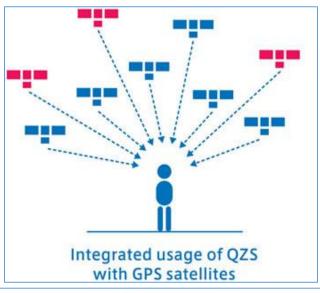
Source: Update on BeiDou Navigation Satellite System, Chengqi Ran, China Satellite Navigation Office Tenth Meeting of ICG, NOV 2015

COMPASS / BEIDOU Signals: Already Transmitted

Band	Frequency MHz	Signal Type	Chip Rate (MHz)	Modulation Type	Data / Symbol rate	Notes
	1561.098	B1(I)	2.046	QPSK	50 / 100	Open
B1	1301.030	B1(Q)	2.0 10	ζ. σ	None	Authorized
	1589.742	B1-2(I)	2.046	QPSK	50 / 100	Open
		B1-2(Q)			25 / 50	Authorized
B2	1207.14	B2(I)	2.046	QPSK	None	Open
DZ		B2(Q)	10.23		50 / 100	Authorized
В3	1268.52	В3	10.23	QPSK	500	Authorized

QZSS (Quasi-Zenith Satellite System) Japan

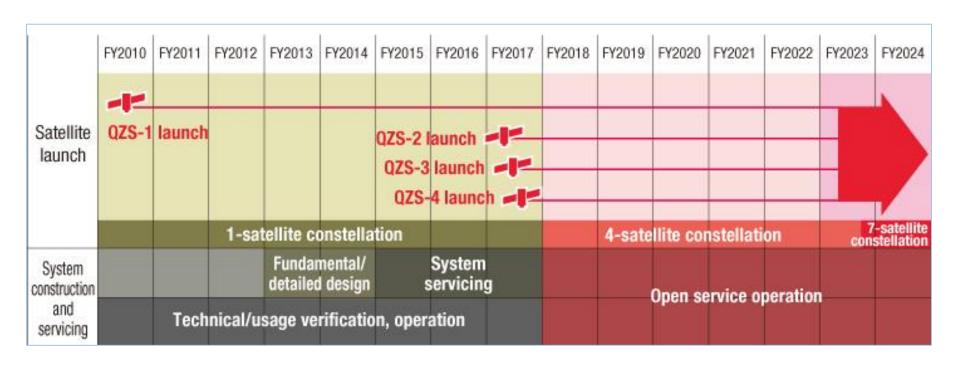




Merits of QZSS

- QZSS signal is designed in such a way that it is interoperable with GPS
- QZSS is visible near zenith; improves visibility & DOP in dense urban area
- Provides Orbit Data of other GNSS signals
- Provides <u>Augmentation Data for Sub-meter and</u>
 Centimeter level position accuracy
- Provides Messaging System during Disasters

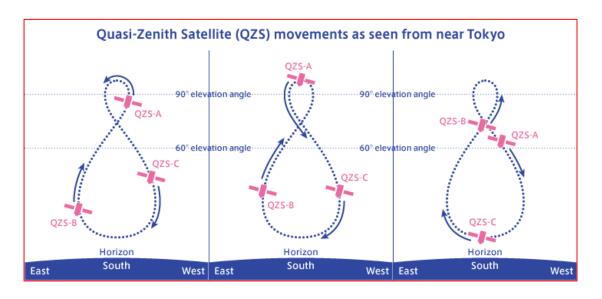
Stabilization of positioning results by increasing the number of satellites


http://qzss.go.jp/en/overview/services/sv04 pnt.html

QZSS Development Plan

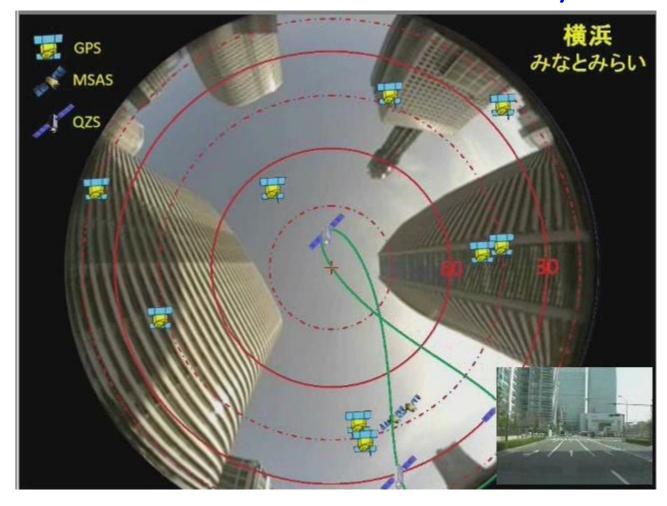
1st Satellite launched on 11th September 2010 : QZ Orbit 2nd Satellite launched on 1st June 2017 : QZ Orbit

3rd Satellite launched on 19th August 2017 : Geostationary Orbit



QZSS Constellation Status

- Current Status
 - One Satellite launched on 11th SEP 2010
- Total constellation of Seven Satellites
 - Three more satellites were launched by the end of 2017



QZSS Satellite Visibility

Source: SPAC Animation Video

Slide: 55

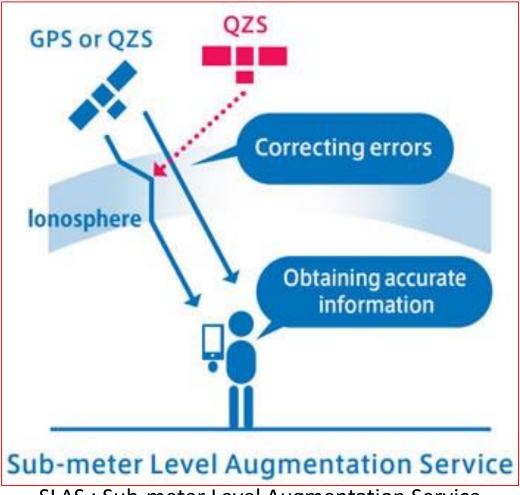
	QZS-1	QZS-2 to	o QZS-4		
Signal	Block IQ	Block IIQ	Block IIG	Tuo no no ioni a no no mui a n	Center
Name	(QZO)	(QZO)	(GEO)	Transmission service	Frequency MHz
	1	2	1		141112
L1C/A	0	0	0	Satellite positioning service	
L1C	0	0	0	Satellite positioning service	
L1SAIF	0			Sub-meter Level Augmentation Service	1575.42
L1S		0	0	(SLAS) / Disaster and Crisis Management	
L1Sb	-	-	0	SBAS Transmission Service from around 2020	
L2C	0	0	0	Satellite positioning service	1227.60
L5	0	0	0	Satellite positioning service	
L5S	-	0	0	Positioning Technology Verification Service	1176.45
LEX	0			MADOCA	1278.75
L6		0	0	Centimeter Level Augmentation Service (CLAS)	
S-band	-	-	0	QZSS Safety Service / SAR	2GHz

QZSS New Applications

QZSS New Applications

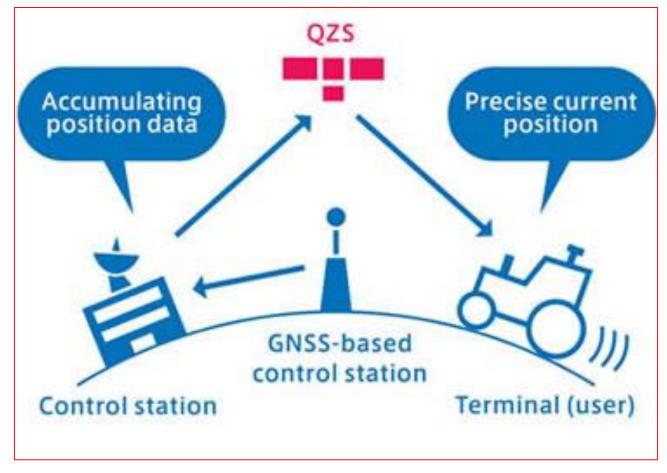
- Short Message Broadcast during Emergencies and Disasters
 - L1SAIF / L1S Signals
- Sub-meter Level Augmentation Service (SLAS)
 - L1SAIF / L1S / L1Sb Signals
- Centimeter Level Augmentation Service (CLAS)
 - L6 Signal
 - PPP-RTK
 - LEX Signal: MADOCA Service
 - PPP

Short Message Broadcast during Disaster



Sub-meter Level Augmentation Service (SLAS)

SLAS: Sub-meter Level Augmentation Service


Signal Used: L1SAIF / L1S

Centimeter Level Augmentation Service (CLAS)

CLAS: Centimeter Level Augmentation Service

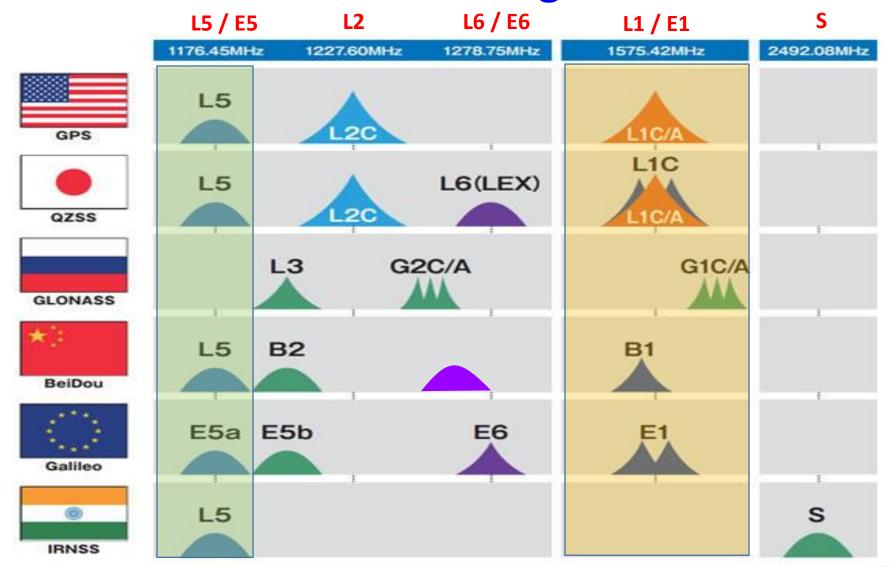
Signal Used: LEX: MADOCA & L6

NAVIC, India (Indian Regional Navigation Satellite System)

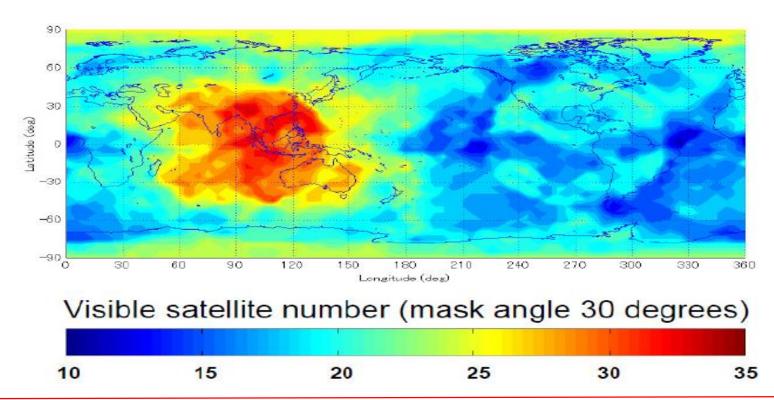
IRNSS Signal Types

Signal	Carrier Frequency	Bandwidth
L5	1176.45MHz	24MHz
S	2492.028MHz	16.5MHz

Multi GNSS Issues


- In the past we had only GPS & GLONASS, now we have Galileo, BeiDou, QZSS, IRNSS
- Compatibility
 - Lets not hurt each other
 - Interference issues
- Interoperable
 - I'll use yours, you can use mine
 - Use of the same receiver and antenna to receive different signals
- Interchangeable
 - Any four will do
 - Can ONE GPS, ONE GLONASS, ONE Galileo and ONE COMPASS provide 3D Position?

Multi-GNSS Signals



Multi GNSS Signals: Benefits to Users

- GPS+GLONASS+Galileo+COMPASS+IRNSS+QZSS
- Asia-Oceanic region will see the maximum number of satellites

Multi GNSS Signals: Benefits to Users

- Increase in usable SVs, signals and frequencies
 - Increase in availability and coverage
 - More robust and reliable services
 - Higher accuracy in bad conditions
 - Less expensive high-end services
 - Better atmospheric correction
- Emerging new and expanding existing applications are to be expected
 - Atmosphere related applications
 - Short Message Broadcasting
 - SAR (Search And Rescue Applications)
 - Bi-static Remote Sensing
 - Compute Soil Moisture, Wind Velocity, Sea Wave Height etc...