

International Federation of Surveyors (FIG)

GNSS Precise Point Positioning (PPP) From Users' Perspective

UNOOSA ICG Xi'an, China, November 2018

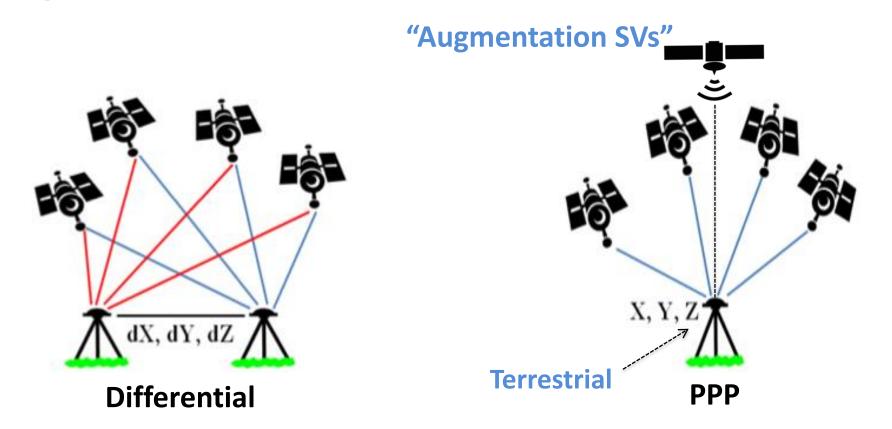
Suelynn Choy – Chair, Working Group 5.4 on GNSS, FIG Mikael Lilje – Vice President, FIG Matt Higgins – Honorary Member, FIG International Committee on Global Navigation Satellite Systems

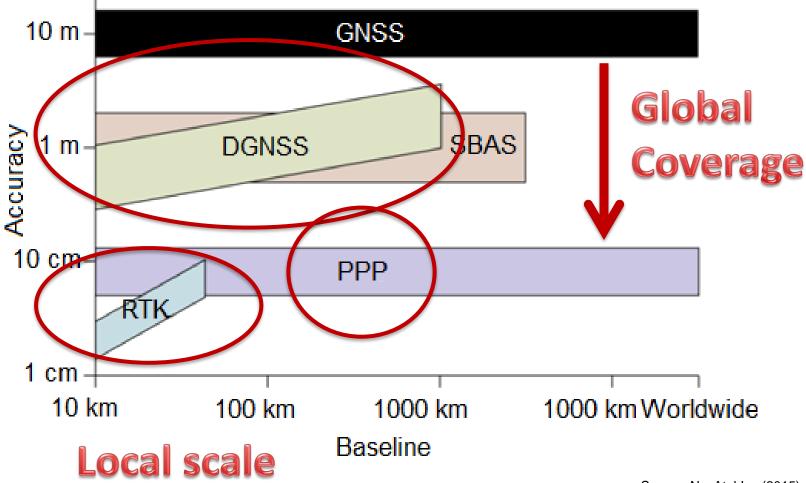
GNSS precise positioning enables a diverse array of applications

International Committee on Global Navigation Satellite Systems

Mass-market users and innovative applications

Welcome to Xiaomi MI 8, the world's first dual-frequency GNSS smartphone.




Precise Point Positioning (PPP)

PPP uses state space representation (SSR) correction products such as precise satellite orbits, clocks and code/phase biases from either (1) commercial or/and public providers that are delivered to the user via (2) satellite and/or terrestrial comms.

Pushing the boundary of precise positioning

Source: NovAtel Inc (2015)

Use and Applications

- Commercial PPP Services, e.g.,
 - Trimble CentrePoint™ RTX™
 - NavCom Global StarFire™ Service
 - Fugro's Precise (Point) Positioning Service
 - Veripos Ultra (Ultra²) and APEX (APEX²) Service
 - TerraStar Correction Services

PPP is **feasible** for positioning and navigation in **remote areas** or regions of **low GNSS reference stations**

PPP Service:

Compatibility and Interoperability

PPP Augmentation Signals by GNSS and RNSS

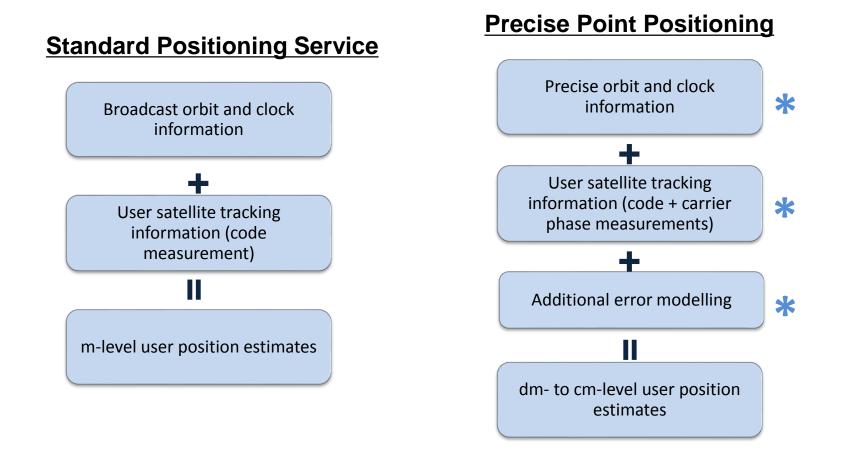
System	SV Orbit	Augmentation	Frequency	Bandwidth
		Signal for PPP	(MHz)	(bps)
Galileo/	MEO	E6b	1278.75	500
EGNOS	GEO	E5b	1207.14	250
GLONASS/	MEO	?	?	C
SDCM	GEO	?	?	?
BeiDou-3	GEO	B2b	1207.14	1000
QZSS	IGSO and GEO	L6D, L6E	1278.75	2000
Australia	650	L1	1575.42	250
Australia	GEO	L5	1176.45	250

GNSS and RNSS PPP Service Characteristics

System	Coverage	Format	Supported GNSS/RNSS	Supported
				Service
Galileo/	Clabal	0	2	2
EGNOS	Global	Open	?	?
GLONASS/	Clabal	Communial	2	2
SDCM	Global	Commercial	?	?
BeiDou-3	Regional	Open ?	?	?
				PPP/PPP-AR
QZSS	Regional	Open	GPS, QZSS, GLO,	(AO)
			GAL, BDS(TBD)	SSR-RTK (JAP)
Australia	Regional	Open	GPS & GAL	PPP
* DDD: Standard f			* AQ: Asia Qaaania	

* PPP: Standard float ambiguity PPP
PPP-AR: Ambiguity resolved PPP
SSR-RTK: RTK based on state space representation method

* AO: Asia Oceania JAP: Japan


	PPP	PPP-AR	SSR-RTK*
Satellite orbits	\checkmark	\checkmark	\checkmark
Satellite clocks	\checkmark	\checkmark	\checkmark
Code biases	×	\checkmark	\checkmark
Phase biases	×	\checkmark	\checkmark
lonospheric delay	×	×	\checkmark
Tropospheric delay	×	×	\checkmark

*Hybrid system of PPP and RTK, i.e. SSR-RTK/PPP-RTK/RTK-PPP

Precise Point Positioning (PPP)

Precise Point Positioning (PPP) allows a single GNSS receiver user to determine position at the decimetre / centimetre error level in kinematic / static mode using precise satellite orbits and clocks.

User Algorithm and Service Characteristics

System	Precise Orbits	Precise Clocks	Definition of	Performance*
	Reference Frame	Reference	Phase Biases	
Galileo/				A
EGNOS				Accuracy: 20 cm
GLONASS/				
SDCM				Accuracy: 10 cm
BeiDou-3				Accuracy: cm-dm
0700	IGS05 (CLAS-D)			
QZSS	ITRF? (CLAS-E)			Accuracy: cm-dm
Australia	ITRF 2014	Hydrogen-maser; C1P2 reference		Accuracy: cm-dm

* PPP performance characteristics: Accuracy, Convergence Time, Availability and Integrity

Next Steps ?

- High precision GNSS in the future
 - Is it a commodity? Or high-tech?
- Ensure compatibility and interoperability to maximize benefit to all GNSS users
- Outcomes from WG-D meeting in Melbourne on 24 October 2018:
 - Briefing document / "PPP template" (circulated)
 - Coordination with other WGs, i.e., WGs D, S & B joint discussion on Wednesday 7 November, 11:15-12:00
 - Possible joint meeting mid 2019