

Testing of GNSS Dual-Frequency with Smartphones

Towards better location performance in mass market applications

P. Crosta, G. Galluzzo, R. Orus, R. Lucas, *ESA* J. Redelkiewicz, *GSA*

ESA UNCLASSIFIED - For Official Use

30 satellites with dual frequency

18 operational Galileo + satellites (E1/E5)

12 operational GPS Block IIF satellites (L1/L5)

	L5 / L5OC/ E5a / B2a	L3OC/ E5b / B2b	L2 / L2C / L2OC	E6 / LEX	L1 / L1OC / E1 / B1
GPS	30		30		30
GLONASS	24	24	24		24
Galileo	30	30		30	30
BeiDou	35	35		35	35
QZSS	3		3	3	3
IRNSS	7				
	129				122

Future GNSS/RNSS common frequencies, showing the potential of E1/L1 and E5/L5 combination

ESA UNCLASSIFIED - For Official Use

| 24/09/2018 | Slide 2

= II 🛌 == + II == 🚝 == II II = = = = 🖬 🛶 🔯 II == II 💥 🖮 🖃 III

ESA UNCLASSIFIED - For Official Use Images/Icons credit https://icons8.com/icon/2305/nfc-tag | TechInsights

| 24/09/2018 | Slide 3

European Space Agency

4

Typical Outdoor Open Sky Positioning Accuracy

SINGLE FREQUENCY multi-GNSS

METER/SUB-METER

DUAL FREQUENCY multi-GNSS

Only commercial/professional apps for real time solution

ESA UNCLASSIFIED - For Official Use Icon credit: TMD Nuon Project

Testing internal phone solutions - static

Multi-GNSS solution 5 GPS DF + 8 Galileo DF in view during this test

ESA UNCLASSIFIED - For Official Use

| 24/09/2018 | Slide 5

Opens Sky Pedestrian test SF vs DF GNSS chipsets

TEST #2 14-09-2018

→ Dual Frequency (DF) measurements along with GNSS chipset algorithmic enhancements enable a significant reduction of positioning error

| 24/09/2018 | Slide 6

TEST #1 15-08-2018 6-8 Galileo satellites in view during the test ESA UNCLASSIFIED - For Official Use

INTERNAL PHONE SOLUTIONS

<5m (95%)

<2m (95%)

ESA R&D: Assessing quality of Raw Measurements

ESA UNCLASSIFIED - For Official Use

= II 🛌 :: 🖛 + II 💻 들 = II II = = = 12 🖬 🖬 🚺 II = : II 💥 📾 🙌

24/09/2018 | Slide 7

ESA R&D: Assessing quality of Raw Measurements

ESA UNCLASSIFIED - For Official Use

| 24/09/2018 | Slide 8

80

+

Horizontal Position Accuracy - Pedestrian

PPP (Final orbits)

Broadcast orbits

 \rightarrow Environment with good quality of raw measurements allows PPP solution

•

24/09/2018 | Slide 9

Horizontal Position Accuracy - Vehicular

•

| 24/09/2018 | Slide 10

_ II ▶ # # + II **=** ≝ **_** II II **_ _** # **0** II **_ ! ! ! !**

ESA UNCLASSIFIED - For Official Use

Horizontal Position Accuracy - Vehicular

- \rightarrow Environment with bad quality of raw measurements limits PPP solution
- \rightarrow Lower noise in E5a L5 only outperforms L1-E1 only, even with less satellites in view.

ESA UNCLASSIFIED - For Official Use

| 24/09/2018 | Slide 11

Conclusions

- 30 satellites already available with dual frequency
- Dual frequency outperforms single frequency in smartphones
- ESA assessed the quality of the raw measurements to understand the feasibility of high accuracy solutions on smartphones
- Wide-band signals beneficial for multipath rejection
- The code noise (multipath) is often the main source of error: hiding the benefits of more accurate clocks and orbital data
- E5a L5 only even with fewer SVs can outperform L1-E1 only.
- Results show potential for high accurate positioning with ultra low cost GNSS chipsets, but quality of raw measurements to be improved for non open sky environments.

GSA GNSS Raw Measurements Task Force

- Discussion forum for industry, academia and research institutes
 - 80 members including ESA
 - Sharing of tests results, raw data, technology trends
 - Direct access to publications on GNSS raw data use
 - Annual meeting to facilitate sharing of best practises
- More information and information on how to join the group here: <u>https://www.gsa.europa.eu/gnss-raw-measurements-task-force</u>

ESA UNCLASSIFIED - For Official Use