

Precise Point Positioning

Why is interoperability important?

Dr Suelynn Choy¹ and Mr Matt Higgins²

¹ Chair of FIG Working Group 5.4 on GNSS (Commission 5: Positioning and Measurement); Associate Professor in Geodesy and Positioning in RMIT University Australia

² Past President of FIG; Manager Geodesy and Positioning, Land and Spatial Information, Queensland Department of Natural Resources, Mines and Energy

10th Multi-GNSS ASIA CONFERENCE, MELBOURNE, 24 October 2018 ICG WORKING GROUP D: REFERENCE FRAMES, TIMING AND APPLICATIONS

GNSS precise positioning enables a diverse array of applications

2

Mass-market users and innovative applications

Pushing the boundary of precise positioning

Precise Point Positioning (PPP)

Precise Point Positioning (PPP) allows a single GNSS receiver user to determine position at the decimetre / centimetre error level in kinematic / static mode using precise satellite orbits and clocks.

Precise Point Positioning

Precise Point Positioning (PPP)

PPP uses state space representation (SSR) correction products such as **precise satellite orbits**, **clocks** and **signal biases** from either *commercial or/and public providers* that are delivered to the user via *satellite and/or terrestrial comms*.

Reference Orbits (Frame)

The use of precise satellite orbits and clock corrections imply positioning, orientation and scale of a precise reference frame.

PPP positions are estimated in the same reference frame as the satellite orbits and clock corrections (e.g. the ITRF or the IGS reference frames) => globally consistent positions.

Reference Clocks

No mixing of clock and orbit corrections from different AC as the errors from the same AC (or combined solutions) are tightly correlated !

International Committee on Global Navigation Satellite Systems

Single or multi-GNSS ?

	PPP	PPP-AR	SSR-RTK*
Satellite orbits	\checkmark	\checkmark	\checkmark
Satellite clocks	\checkmark	\checkmark	\checkmark
Code biases	×	\checkmark	\checkmark
Phase biases	×	\checkmark	\checkmark
Ionospheric delay	×	×	\checkmark
Tropospheric delay	×	×	\checkmark

*Hybrid system of PPP and RTK, i.e. SSR-RTK/PPP-RTK/RTK-PPP

Single, dual- or multi-frequency PPP ?

Clarifying the Ambiguities

$$C_{r,i}^{s} = \rho_{r}^{s} + T + \gamma_{i}I + dt_{r} + dt^{s} + d_{r,C_{i}} - d_{C_{i}}^{s} + \varepsilon_{C_{i}}$$

$$P_{r,j}^{s} = \rho_{r}^{s} + T + \gamma_{i}I + dt_{r} + dt^{s} + d_{r,P_{i}} - d_{P_{i}}^{s} + \varepsilon_{P_{i}}$$

$$\lambda_{i}(\phi_{r,i}^{s} + N_{r,j}^{s}) = \rho_{r}^{s} + T - \gamma_{i}I + dt_{r} + dt^{s} + \delta_{r,L_{i}} - \delta_{P_{i}}^{s} + \varepsilon_{L_{i}}$$
Geometric Time Hardware parameters delay delay

$$P_{rj}^{s} = \rho_{r}^{s} + T + \gamma_{i}I + dt_{r,P_{pr}} + dt_{P_{pr}}^{s} + \varepsilon_{P_{i}}$$

$$\Phi_{rj}^{s} = \rho_{r}^{s} + T - \gamma_{i}I + dt_{r,P_{pr}} + dt_{P_{pr}}^{s} - A_{rj}^{s} + \varepsilon_{L_{i}}$$
where $A_{rj}^{s} = (d_{r,\Pi^{r}} - d_{\Pi^{r}}^{s}) - (\delta_{r,\Pi^{r}} - \delta_{\Pi^{r}}^{s}) + \lambda_{i}N_{rj}^{s}$
Real-valued Code Phase Integer
ambiguity biases biases ambiguity
term term

	Float PPP	DC model	IRC model	FCB model
Observations	P3, L3	P3, L3, P6, L4	P3, L3, P6, L4	P3, L3, P6, L4
Clock terms	1	2 (Code and phase)	1	1
Data rate		$ \begin{aligned} \delta t'_{\rm IF} &- 30 \text{ seconds} \\ d t'_{\rm IF} &- 30 \text{ seconds} \\ \delta'_{\rm WN} &- 30 \text{ seconds} \end{aligned} $	$dt_{ii'}^s - 30$ seconds $\delta_i^s - 5$ seconds $d_i^s - daily$	$dt'_{\rm IF} - 5 \text{ seconds} a'_{\rm I} - 1 \text{ seconds} a'_{\rm WN} - 2 \text{ days} $
Ρ,			d_i^{*}	
L,			δ_i^s	
Narrowlane	_			a'
Widelane		$\delta'_{ m wn}$		a ^s _{WN}
Estimated ambiguities	Real	Integer	Integer	Real (FCB applied to estimated ambiguity)

Source: Seepersad and Bisnath (2016)

Commercial PPP Service

Company	Services	Company	Services
OmniSTAR	OmniSTAR HP	NavCom	StarFire
	OmniSTAR G2	- ···	C-NavC2
	OmniSTAR XP	C-Nav	C-NavC1
Trimble	CenterPoint RTX		Apex 2
	RangePoint RTX		Apex
	ViewPoint RTX	Veripos	Ultra 2
Fugro	Starfix.G2+		Ultra
	Starfix.G4		TerraStar-C
	Starfix.G2	TerraStar	TerraStar-D
	Starfix.XP2	Novatel	CORRECT (PPP)
	Starfix.HP	Hemisphere	Atlas

Commercial PPP Service

Augmentation/Communication Satellite
ASAT, MSV, AORW, AORE, ESAT, IOR, PORL
ASAT, MSV, AORW, AORE, ESAT, IOR, AUSAT, POR
Inmarsat, SpotBeam
IND-W (25°E), PAC-E (98°W), IND-E (109°E)
Inmarsat 4-F3, Inmarsat 4-F1, Inmarsat 3-F5, Inmarsat 3-F4,
Inmarsat 3-F3, Inmarsat 3-F2, Inmarsat 3-F1
Inmarsat 25°E, 98°W, 143.5°E, AORE, AORW, IOR, POR
Inmarsat 25°E, 98°W, 143.5°E, AORE, AORW, IOR, POR

All (if not most) GEO communication satellites !

Augmentation Signals Frequency

Example of a commercial service providing global coverage

Region	Frequency (MHz)	Baud rate
Western North America (RTXWN)	1557.8615	600
Central North America (RTXCN)	1557.8150	2400
Eastern North America (RTXEN)	1557.8590	600
Latin America (RTXSA)	1539.8325	600
Europe / Africa (RTXEA)	1539.9525	600
Europe	1523.7250	2400
Asia / Pacific	1539.8325	600

PPP Augmentation Signals by GNSS and RNSS

System	SV Orbit	Augmentation	Frequency	Bandwidth
		Signal for PPP	(MHz)	(bps)
Galileo/	MEO	E6	1278.75	500
EGNOS	GEO	E5b	1207.14	250
GLONASS/	MEO	L1 or L3?	1207.14 (L3)	Э
SDCM	GEO	L1 or L5?	?	·
BeiDou-3	GEO	B2b	1207.14	1000
QZSS	IGSO and GEO	L6D, L6E	1278.75	2000

Australia ?

Combination of GEO, MEO and IGSO satellites !

Service Coverage

Regional ?

Proprietary ?

Consideration

- High precision GNSS, is it a commodity? Or high-tech?
- Would it constitute to "Selective unavailability"?
- Intended market, business model?
- Must ensure compatibility and interoperability to maximize benefit to all GNSS users.