

International Federation of Surveyors (FIG)

GNSS Precise Point Positioning (PPP) From Users' Perspective

UNOOSA ICG Xi'an, China, November 2018

Suelynn Choy – Chair, Working Group 5.4 on GNSS Mikael Lilje – Vice President, FIG Matt Higgins – Honorary Member, FIG Established in Paris 1878;

Federation of national associations;

Represents all surveying disciplines;

UN-recognised non-government organisation (NGO);

Its aim is to ensure that the disciplines of surveying and all who practise them meet the needs of the markets and communities that they serve;

It provides an international forum for discussion and development aiming to promote professional practice and standards

Liaise with like minded organisations

https://www.fig.net/

International Federation of Surveyors Fédération Internationale des Géomètres International Vereinigung der Vermessungsingenieure

FIG Council

President

Chryssy Potsiou TCG (Greece) 2015-18

Rudolf Staiger DVW (Germany) Vice President 2015-18 President 2019-22

Diane Dumashie RICS (UK) 2015-18 + 2019-22

Orhan Ercan TMMOB (Turkey) (2017-20)

Mikael Lilje SPBE (Sweden) 2017-20

Jixian Zhang CSSMG (China) 2019-22

International Committee on Global Navigation Satellite Systems

GNSS precise positioning enables a diverse array of applications

International Committee on Global Navigation Satellite Systems

Mass-market users and innovative applications

Precise Point Positioning (PPP)

PPP uses state space representation (SSR) correction products such as precise satellite orbits, clocks and signal biases from either (1) commercial or/and public providers that are delivered to the user via (2) satellite and/or terrestrial comms.

Pushing the boundary of precise positioning

Source: NovAtel Inc (2015)

Use and Applications

- Commercial PPP Services, e.g.,
 - Trimble CentrePoint™ RTX™
 - NavCom Global StarFire™ Service
 - Fugro's Precise (Point) Positioning Service
 - Veripos Ultra (Ultra²) and APEX (APEX²) Service
 - TerraStar Correction Services

PPP is **feasible** for positioning and navigation in **remote areas** or regions of **low GNSS reference stations**

PPP Service:

Compatibly and Interoperability

PPP Augmentation Signals by GNSS and RNSS

System	SV Orbit	Augmentation	Frequency	Bandwidth
		Signal for PPP	(MHz)	(bps)
Galileo/	MEO	E6	1278.75	500
EGNOS	GEO	E5b	1207.14	250
GLONASS/	MEO	L1 or L3 ?	?	2
SDCM	GEO	L1 or L5 ?	?	?
BeiDou-3	GEO	B2b	1207.14	1000
QZSS	IGSO and GEO	L6D, L6E	1278.75	2000
· · ·	050	L1	1575.42	250
Australia	GEO	L5	1176.45	250

GNSS and RNSS PPP Service Characteristics

System	Coverage	Format	Supported GNSS/RNSS	Supported
				Service
Galileo/			2	2
EGNOS	Global	Open ?	<u>ې</u>	<u>۲</u>
GLONASS/		Commercial ?	?	2
SDCM	Global			Ŷ
BeiDou-3	Regional	Open ?	?	?
				PPP-AR
QZSS	Regional	Open	GPS, QZSS, GLO & GAL	SSR-RTK (JAP)
Australia	Regional	Open	GPS & GAL	PPP-float

 * PPP-float: Standard float ambiguity PPP PPP-AR: Ambiguity resolved PPP SSR-RTK: RTK based on state space representation method

	PPP	PPP-AR	SSR-RTK*
Satellite orbits	\checkmark	\checkmark	\checkmark
Satellite clocks	\checkmark	\checkmark	\checkmark
Code biases	×	\checkmark	\checkmark
Phase biases	×	\checkmark	\checkmark
Ionospheric delay	×	×	\checkmark
Tropospheric delay	×	×	\checkmark

*Hybrid system of PPP and RTK, i.e. SSR-RTK/PPP-RTK/RTK-PPP

Precise Point Positioning (PPP)

Precise Point Positioning (PPP) allows a single GNSS receiver user to determine position at the decimetre / centimetre error level in kinematic / static mode using precise satellite orbits and clocks.

User Algorithm and Service Characteristics

System	Precise Orbits	Precise Clocks	Definition of	Performance
	Reference Frame	Reference	phase biases	
Galileo/				
EGNOS				
GLONASS/				
SDCM				
BeiDou-3				
QZSS	ITRF			
Australia	ITRF 2014	Hydrogen-maser; C1P2 reference	-	

Next Steps ?

- High precision GNSS in the future
 - Is it a commodity? Or high-tech?
- Ensure compatibility and interoperability to maximize benefit to all GNSS users
- Outcomes from WG-D meeting in Melbourne on 24 October 2018:
 - Briefing document / "PPP template"
 - Coordination with other WGs, e.g., Joint WG-D and WG-S discussion on Wednesday 7 November, 10:50-12:00
 - Possible joint meeting mid 2019