

International Committee on Global Navigation Satellite Systems

New Transformation Parameters at Epoch 2010.0 from PZ-90.11 to ITRF2014

THIRTEENTH MEETING OF THE INTERNATIONAL COMMITTEE ON GLOBAL NAVIGATION SATELLITE SYSTEMS ICG-13 Xi'an, China, 4 – 9 November 2018

Speaker: Igor Gusev

New Transformation Parameters at Epoch 2010.0 from PZ-90.11 to ITRF2014;

Monitoring Results of PZ-90 Reference Stations.

Two ways to define Transformation Parameters

- 1) direct use the same station coordinates in both reference frames;
- 2) use of GNSS orbits that were determined from ground stations specified in two reference frames.

Reference frame OXYZ

IGS Sites used to determine Transformation Parameters

Three main criteria to determine Transformation Parameters are

- 1) number of reference stations;
- 2) the best possible site distribution;
- 3) accuracy of the relative position of the reference stations.

IGS Sites

ALKI	13) JPLIVI	25) PDEL
ARTU	14) KELY	26) PETS
BRAZ	15) KERG	27) RAMO
CHAT	16) KOKB	28) SOFI
DAV1	17) LHAZ	29) SUTH
DGAR	18) MAC1	30) TIXI
GUAM	19) MCM4	31) VESL
GUAT	20) NKLG	32) WHIT
HOFN	21) NYA1	33) XMIS
IISC	22) NRIL	34) YAKT
IRKJ	23) OHI2	35) YELL
ISPA	24) ONSA	36) ZECK
	ALRT ARTU BRAZ CHAT DAV1 DGAR GUAM GUAT HOFN IISC IRKJ ISPA	ALRT 13) JPLM ARTU 14) KELY BRAZ 15) KERG CHAT 16) KOKB DAV1 17) LHAZ DGAR 18) MAC1 GUAM 19) MCM4 GUAT 20) NKLG HOFN 21) NYA1 IISC 22) NRIL IRKJ 23) OHI2 ISPA 24) ONSA

Helmert Transformation

<u>Three-step procedure</u> was done to determine new transformation parameters

- 1) IGS Station Positions were determined in PZ-90.11.
- 2) Least mean square procedure was apply.
- 3) Accuracy assessment was perform.

$$\begin{bmatrix} X_p \\ Y_p \\ Z_p \end{bmatrix} = (1+m) \cdot \begin{bmatrix} 1 & \omega_Z & -\omega_Y \\ -\omega_Z & 1 & \omega_X \\ \omega_Y & -\omega_X & 1 \end{bmatrix} \cdot \begin{bmatrix} A_p \\ B_p \\ C_p \end{bmatrix} + \begin{bmatrix} dX_0 \\ dY_0 \\ dZ_0 \end{bmatrix}$$

$$\begin{bmatrix} X-A\\Y-B\\Z-C \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & X & 0 & -Z & Y\\0 & 1 & 0 & Y & Z & 0 & -X\\0 & 0 & 1 & Z & -Y & X & 0 \end{bmatrix} \cdot \begin{bmatrix} dX_0 & dY_0 & dZ_0 & m & \omega_X & \omega_Y & \omega_Z \end{bmatrix}$$

A method for determining transformation parameters (1)

Step 1. Positions of selected IGS stations were determined in PZ-90.11 reference frame using GNSS observations.

$$\vec{X}_{\text{IGS}}^{\text{ITRF}} \Longrightarrow \vec{X}_{\text{IGS}}^{\text{PZ-90}}$$

Step 2. Least Mean Square Procedure was apply.

$$L = D x$$

$$V^{T} P V = min$$

$$x = (D^{T} P D)^{-1} D^{T} P L$$

$$V = (V_{x}, V_{y}, V_{z})$$

$$Q = (D^{T} P D)^{-1}$$

A method for determining transformation parameters (2)

<u>Step 3.</u> Accuracy assessment was performed.

Normalized Correlation Matrix

	dX	dY	dZ	m	wХ	wY	wΖ
dX	1,000	-0,006	-0,005	-0,071	0,009	0,262	-0 , 072
dY		1,000	-0,003	-0,052	-0 , 263	-0,009	0,097
dZ			1,000	-0,231	0,057	-0,079	0,000
m				1,000	0,000	0,000	0,000
wΧ					1,000	0,039	0,015
wY						1,000	0,010
wΖ							1,000

New Transformation Parameters at Epoch 2010.0 from PZ-90.11 to ITRF2014

#	From	То	Δ <i>X</i> (m)	Δ <i>Y</i> (m)	ΔZ (m)	ω_X (mas)	ω_{Y} (mas)	ω_Z (mas)	<i>m</i> (10 ⁻⁶)	Epoch
1	PZ-90	PZ-90.02	$\begin{array}{c} -1.07 \\ \pm 0.10 \end{array}$	$\begin{array}{c} -0.03 \\ \pm 0.10 \end{array}$	$^{+0.02}_{\pm 0.10}$	0	0	-130 ±10	-0.220 ± 0.020	2002.0
2	WGS 84 (G1150)	PZ-90.02	+0.36 ±0.10	$\begin{array}{c} -0.08 \\ \pm 0.10 \end{array}$	-0.18 ± 0.10	0	0	0	0	2002.0
3	PZ-90.11	ITRF2008	$\begin{array}{c} -0.003 \\ \pm 0.002 \end{array}$	$\begin{array}{c} -0.001 \\ \pm 0.002 \end{array}$	$^{+0.000}_{\pm 0.002}$	$^{+0.019}_{\pm 0.072}$	-0.042 ± 0.073	$^{+0.002}_{\pm 0.090}$	$\begin{array}{c} -0.000 \\ \pm 0.0003 \end{array}$	2010.0
4	PZ-90.11	ITRF2014	-0.0053 ± 0.0020	-0.0040 ±0.0020	-0.0032 ±0.0020	+0.035 ±0.073	-0.087 ±0.073	+0.036 ±0.090	-0.0000 ± 0.0001	2010.0

$$RMS_{\vec{X}_{ITRF2014}} = 1, 2 cm$$

Monitoring Results of PZ-90 Reference Stations

Velocities of Norilsk and Blagoveshchensk Reference Stations were observed during a period 2010.0-2018.33

Norilsk Station Position. Data span: 2010.0-2018.33

Blagoveshchensk Station Position. Data span: 2010.0-2018.33

Monitoring Results

different

Observed and computed station motions for Norilsk and Blagoveshchensk sites in a period 2010.0-2018.33

		Observed station motion Δ_O and their RMS in cm	Site velocities at epoch 2010.0 in mm/year	Computed station motion Δ_C in cm	Residuals $\Delta_O - \Delta_C$ in cm
			Norils	(
	X	-20.18 ±0.25	-2.21	-18.66	-1.52
the residuals	Y	+2.00 ±0.21	+0.24	+2.00	+0.00
	Ζ	+0.83 ±0.35	-0.05	-0.42	+0.88
station position			Blagoveshc	hensk	
erent methods	X	-20.91 ±0.36	-2.25	-18.74	-2.17
to d	Y	-7.50 ±0.24	-0.54	-4.50	-3.00
tea.	Ζ	-8.58 ±0.28	-0.64	-5.33	-3.25

These are:

are investigated.

To

between

three

computed

reduce

- extended parametrization based on the estimation of the periodic signals embedded in the time series of 1) the station positions;
- improved geophysical modeling like postseismic deformation model; 2)
- frequent estimation of station positions as a result of station positions monitoring. 3)

Conclusion & Future Plans

- New transformation parameters at epoch 2010.0 from PZ-90.11 to ITRF2014 were defined.
 - ✓ PZ-90 Template (description) was already updated and may be published on the ICG Web-site.
- > The work on organization of PZ-90 reference stations monitoring continues.
 - ✓ GNSS observing data from several PZ-90 reference stations are put on the Web in test mode.
 - \checkmark New approaches to improve the reference frame stability are investigated.
- PZ-90 reference stations located in Russian Federation are planed to be included in IGS network.
 - ✓ IGS requirements to new IGS site were investigated.
 - ✓ PZ-90 reference stations were upgraded.
- > New version of PZ-90 reference frame will be designed by 2022 year.