IGSO Operation and De-orbit Area

vs.

GSO Protected Region

Mari Yuzawa Gotoh
MITSUBISHI ELECTRIC CORPORATION

Nov.5-9.2018

ICG
(International Committee on GNSS)
1. Purpose --- P.3
2. IGSO operation orbit vs. GSO --- P.4
3. IGSO De-orbit vs. GSO and Other IGSO --- P.11
4. Conclusion --- P.25
1. Purpose

This material

• proposes the current possible issues of IGSO orbit and

• initiates a discussion to seek the most appropriate solutions for IGSO.
2. IGSO operation orbit vs. GSO

- IGSO interference time increases as the inclination and the eccentricity become lower.
- The longitude deviations are longer than GSO.

Table 1-1

<table>
<thead>
<tr>
<th>Fig.</th>
<th>IGSO</th>
<th>Inclination [deg]</th>
<th>Eccentricity</th>
<th>Interference time [hr]</th>
<th>Longitude deviation [deg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>QZSS</td>
<td>36</td>
<td>0.75</td>
<td>0.9</td>
<td>2.6</td>
</tr>
<tr>
<td>1-4</td>
<td>QZSS</td>
<td>47</td>
<td>0.75</td>
<td>0.9</td>
<td>4.4</td>
</tr>
<tr>
<td>1-5</td>
<td>BeiDou</td>
<td>54</td>
<td>0</td>
<td>4.9</td>
<td>15.2</td>
</tr>
<tr>
<td>1-6</td>
<td>NAVIC</td>
<td>29</td>
<td>0</td>
<td>8.6</td>
<td>6.6</td>
</tr>
</tbody>
</table>
2. IGSO operation orbit vs. GSO

Fig.1-1 Cross section of GEO and LEO protected regions
2. IGSO operation orbit vs. GSO

Fig.1-2 Representative Orbit Semi-major [km] vs Latitude [deg]
2. IGSO operation orbit vs. GSO

Blue: interference time is 0.9 [hr]
Orange: not interference time is 23.1 [hr]

Fig. 1-3 Longitude [deg] vs Latitude [deg] QZS (Inc : 36 [deg])
2. IGSO operation orbit vs. GSO

Fig.1-4 Longitude [deg] vs Latitude [deg] QZS (Inc : 47 [deg])

Blue: interference time is 0.9 [hr]

Orange: not interference time is 23.1 [hr]
2. IGSO operation orbit vs. GSO

Blue:
interference time is 4.9 [hr]

Orange:
not interference time is 19.1 [hr]

Fig. 1-5 Longitude [deg] vs Latitude [deg] BeiDou (Inc : 55 [deg])
2. IGSO operation orbit vs. GSO

Blue: interference time is 8.6 [hr]

Orange: not interference time is 15.4 [hr]

Fig.1-6 Longitude [deg] vs Latitude [deg] NAVIC (Inc : 29 [deg])
QZSS’s de-orbit parameters are actual numbers as these satellites are currently in orbit.

As for BeiDou and NAVIC, assumed de-orbit parameters are used. These assumptions are referring open papers.
3. IGSO De-orbit vs. GSO and Other IGSO

<table>
<thead>
<tr>
<th>Figure</th>
<th>IGSO</th>
<th>De-orbit height [km]</th>
<th>RAAN [deg]</th>
<th>Inclination [deg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-7</td>
<td>QZSS-QZO</td>
<td>3600</td>
<td>0-360</td>
<td>36-47</td>
</tr>
<tr>
<td>1-8</td>
<td>QZSS-GEO</td>
<td>1920</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>1-9</td>
<td>BeiDou</td>
<td>350</td>
<td>189</td>
<td>54</td>
</tr>
<tr>
<td>1-10</td>
<td>BeiDou</td>
<td>350</td>
<td>69</td>
<td>54</td>
</tr>
<tr>
<td>1-11</td>
<td>BeiDou</td>
<td>350</td>
<td>309</td>
<td>54</td>
</tr>
<tr>
<td>1-12</td>
<td>BeiDou</td>
<td>1000</td>
<td>69</td>
<td>54</td>
</tr>
<tr>
<td>1-13</td>
<td>NAVIC</td>
<td>350</td>
<td>70</td>
<td>29</td>
</tr>
<tr>
<td>1-14</td>
<td>NAVIC</td>
<td>350</td>
<td>190</td>
<td>29</td>
</tr>
<tr>
<td>1-15</td>
<td>NAVIC</td>
<td>350</td>
<td>310</td>
<td>29</td>
</tr>
<tr>
<td>1-16</td>
<td>NAVIC</td>
<td>2000</td>
<td>310</td>
<td>29</td>
</tr>
</tbody>
</table>
Key parameters of IGSO de-orbit are the height, RAAN and inclination.

• De-orbit perturbed area increases as the inclination decreases.

• The possibility of interfering into GEO region decreases as the height of de-orbit increases.

• The area of de-orbit perturbation depends on initial RAAN.
Table 1-3 Interference Summary

<table>
<thead>
<tr>
<th>Figure</th>
<th>IGSO</th>
<th>De-orbit Height [km]</th>
<th>RAAN [deg]</th>
<th>Inclination [deg]</th>
<th>Interference in protected region</th>
<th>Operation region</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-7</td>
<td>QZSS-QZO</td>
<td>3600</td>
<td>0-360</td>
<td>36-47 0.05</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>1-8</td>
<td>QZSS-GEO</td>
<td>1920</td>
<td></td>
<td></td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>1-9</td>
<td>BeiDou</td>
<td>350</td>
<td>189</td>
<td>54</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1-10</td>
<td>BeiDou</td>
<td>350</td>
<td>69</td>
<td>54</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1-11</td>
<td>BeiDou</td>
<td>350</td>
<td>309</td>
<td>54</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1-12</td>
<td>BeiDou</td>
<td>1000</td>
<td>69</td>
<td>54</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1-13</td>
<td>NAVIC</td>
<td>350</td>
<td>70</td>
<td>29</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>1-14</td>
<td>NAVIC</td>
<td>350</td>
<td>190</td>
<td>29</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>1-15</td>
<td>NAVIC</td>
<td>350</td>
<td>310</td>
<td>29</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>1-16</td>
<td>NAVIC</td>
<td>2000</td>
<td>310</td>
<td>29</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
3. IGSO De-orbit vs. GSO and Other IGSO

Fig. 1-7 QZS4 Disposal Orbit Height 3600km and Perturbed Range during 100 years
3. IGSO De-orbit vs. GSO and Other IGSO

Fig. 1-8 GEO Disposal Orbit Height 1920km and Perturbed Range during 100 years
3. IGSO De-orbit vs. GSO and Other IGSO

Fig.1-9 BeiDou Disposal Orbit Height 350km and Perturbed Range during 100 years
3. IGSO De-orbit vs. GSO and Other IGSO

Fig.1-10 BeiDou Disposal Orbit Height 350km and Perturbed Range during 100 years
3. IGSO De-orbit vs. GSO and Other IGSO

Fig.1-11 BeiDou Disposal Orbit Height 350km and Perturbed Range during 100 years
3. IGSO De-orbit vs. GSO and Other IGSO

Fig. 1-12 BeiDou Disposal Orbit Height 1000km and Perturbed Range during 100 years
3. IGSO De-orbit vs. GSO and Other IGSO

Fig. 1-13 NAVIC Disposal Orbit Height 350km and Perturbed Range during 100 years
3. IGSO De-orbit vs. GSO and Other IGSO

Fig. 1-14 NAVIC Disposal Orbit Height 350km and Perturbed Range during 100 years
3. IGSO De-orbit vs. GSO and Other IGSO

Fig.1-15 NAVIC Disposal Orbit Height 350km and Perturbed Range during 100 years
3. IGSO De-orbit vs. GSO and Other IGSO

Fig.1-16 NAVIC Disposal Orbit Height 2000km and Perturbed Range during 100 years
4. Conclusion

On operation orbit

• it is recommended to open the orbit information

• check minimum distance frequently

• and decrease the collision possibility
Regarding the disposal orbit

• Achieve the de-orbit not to encroach onto GSO region

• If it cannot achieve the de-orbit, open the disposal orbit to notify the possibility of interference to other satellites
4. Conclusion

For sustainable operation in GEO vicinity, **create a data base of IGSO operation and disposal orbits**

Most importantly, **establish a forum to discuss issues and methods to coordination**
Thank you so much for your attention.