Purpose of US PNTAB:

Assuring PNT for all -
and

Exploiting GNSS for Future Applications

FACA Representing 100s of millions of diverse users
and many scores of applications

Adm. Thad Allen (Chairman), Booz Allen Hamilton
Hon. John Stenbit (Deputy Chairman), former Assistant Secretary of Defense
Dr. Bradford Parkinson (1st Vice Chair), Stanford University
Governor James E. Geringer (2nd Vice Chair), Environmental Systems Research Institute (ESRI)
What is important for PNT users now?

Two of the “Important Things” that I Listed earlier
F1. Defining and publicizing power of 2nd (and 3rd) GNSS satellite signal lobe for SSV

F2. Progress and prospects of Intelligent Transportation Program (includes positive Train Control)

F3. Accelerate Progress on fielding Autonomous Vehicles – (e.g. large interstate trucks and consumer vehicles on expressways)

F4. How can GNSS help in integrating UAS and Urban Air Mobility (UAM) into the airspace system?

F5. Insuring protection for Powergrid Timing

F6. Ensuring Timing for the Financial community

F7. Ensuring scientific capabilities are preserved and enhanced, such as water vapor measurements and weather predictions
F4. How can GNSS help in integrating UAS and Urban Air Mobility (UAM) into the airspace system?
Rapidly growing UAS applications - Significant Productivity Enhancements

- Power line inspection
- Agricultural Inspection
- Media coverage
- Security

Both UAS Control and Air Traffic Monitoring depend on GNSS
Autonomous Air Taxi - Volocopter now being tested in cities
PrimeAir Coming to a house near you?
A Problem: What non-UAS Applications spend time flying close to the ground? (Where collisions with UASs are most probable)

- Commercial Airplanes during takeoff and landing
- Wildfire Tankers/Helicopters
- Law Enforcement Helicopters
- General Aviation – particularly a small or remote airfields
Firefighting Aircraft are significant users of low-altitude airspace

14 Firefighting Aircraft Grounded by Drone, Operator Faces 14 Felony Charges
Part of Solution? - GNSS based Geofencing - commercial products already available

Need 3D and rapid exclusion assignment - enforcement?
- Robust GNSS is key enabler
UAS/UAM regulation by FAA in US is evolving—amid safety and security concerns

- No simple answers but PNT/GNSS is at the heart of the problem and solution
- BVLOS not authorized, but certainly feasible and desirable for civil applications
- “Geofencing” has well established products and systems for ground fleet management
 - GNSS as Position measurement/location
 - Adaptation to UAS/UAM?
 - Static and dynamic fences?
 - Feasibility of fail safe UAS control?

By 2022 the Federal Aviation Administration (FAA) expects that there will be 2.9 million drones flying in the United States. (CNBC 2019)
F3. Accelerate Progress on fielding **Autonomous Vehicles** - (especially large interstate trucks and consumer vehicles on expressways)
A Humanitarian Opportunity

HUMAN DRIVERS
The people behind the wheel are the most dangerous part of driving

IN THE WAKE of Toyota’s much publicized recall for unintended acceleration, the idea of conceding control of our cars to software seems about as sane as letting a Roomba vacuum cleaner do brain surgery. And yet the data are unequivocal according to multiple studies conducted over the last 10 years—such as distraction and fatigued driving are the primary causes of accidents. Reason suggests that the best way to get idiotic humans out of the car is to automate them.

But are sci-fi-style, fully autonomous vehicles the future? David Shinar, head of the Human Factors Safety Laboratory at Michigan State University, says not. “If the technology is monitoring the system—sort of like a plane on autopilot,” Shinar says. “Even when that system is engaged, the pilot doesn’t go back into the first class cabin and take a nap. What we can expect are new levels of distraction and decreases in attention. The idea is to shift the risk, not to shift the responsibility.”

Yet, the technology to control (which is still in its infancy) may eventually create a generation of human drivers who will never drive again. In the course on driverless vehicles at Michigan State, a student named Matt Hirth described a challenge: to design traffic systems that might not work for us, but work for autonomous cars.

US Traffic Fatalities in Recent 10 Years: 387,000
- 213 People Died on US Roads for Every US Soldier who died in Afghanistan in the same period.
Implementing “Brilliant Autos” (Auto-guided Automobiles) and “Brilliant Semis” (Auto-guided long-haul trucks/lorries)

- Use all GNSS Position Signals
- Vector Kinematic Receivers (10 cm or better)
- MEMS/IMU
- 360° Radars
- Cooperative Tracking of other vehicles (V2V)
“Brilliant Vehicles” - GNSS will be an essential part - Needs Phased Introduction (underway!)

• **Phase I**: Alerts and Warnings (especially for low-vis)
 • Lane Drifting
 • Adjacent Vehicle Hazards
 • Traction
 • Curves
 • Vehicles
 • Road Hazards

• **Phase II**: Auto Steering/Throttle/Braking with manual over-ride

• **Phase III** (for Cargo Trucks): No Driver
F3. Status and enablers for Autonomous Road Vehicles - specially Semi’s

- “The Freightliner”
- Daimler-Benz Prototype
- GNSS plus
- Stereo Camera Reads Lanes
- Short and Long Range Radars

- The World’s First Self-Driving Semi-Truck Hits the Road (May 2015)

- Including: V2V Vehicle to Vehicle Communications - What are adjacent vehicles doing?
European Demonstration: Truck Platooning - not yet fully automatic

On average 10 percent less fuel per journey.

... 90 percent of driving accidents are caused by human error...

Demonstration: Car Autopilot Convoy

No Hands
Payoffs of Autonomous Long-haul Trucks

Economic
- Drivers Cost ~100K$/+/yr.
 - Can run for < 12 hours/day
- 3 Million Full-time drivers in US
- Predict Shortage of 240,000 drivers by 2020
- Platooning saves Fuel

Safety
- In 2012 in USTrucks involved in ~ 330,000 Accidents
 - ~ 4000 people killed - mostly in cars
 - 90% were driver error
- Safety Features being installed: Lane Control, Automatic Braking

"Let the trucks drive themselves, and you can improve safety, meet increased demand, and save time and fuel."

(Wired Magazine May 2015)
Many Issues to be resolved with self-driving vehicles

- Safety
- **Integrity**
- **Accuracy**
- Affordability
- Certification
- Public/Political Acceptance

GNSS can help with these issues
Conclusion:

GNSS can contribute for both F3 & F4

- **Continue Improvements in Availability (ARAIM)**
 - *Frequency diversity* (e.g. using dual frequency measurements on L1/L5 for GPS),
 - *Geometry diversity* (e.g. using as many GNSS constellations as possible in order to reach the required levels of satellite availability),
 - *Use of an Integrity Support Message (ISM)* send safety assertions for each of the core GNSS to the sovereign responsible for a given airspace,

- **Accelerate Interchangeability**
 (for Integrity, Availability and Accuracy)
 - 4 Satellite Ranges from 4 *Different* Constellations yields the *same Positioning Accuracy* as 4 Satellite Ranges from one constellation or:
 \[4 \text{ from } 4 \cong 4 \text{ from } 1 - \text{ “Any four will do”}\]