

NavIC/GNSS Signal Monitoring and Performance Evaluation Facility

Pravin Patidar Space Applications Centre Indian Space Research Organisation Ahmedabad, India

Why Performance monitoring?

- Considering the social, economic and strategic impact of satellite navigation services, it is imperative that the systems operate with adhering to certain performance standards.
 - With performance standards put in place it is also important to independently monitor the compliance to such standards.
- NavIC is a new navigation systems in Indian region.
 - Performance standards for NavIC are being worked out.
- A monitoring and performance evaluation facility is being established to ascertain user level performance of NavIC and also to monitor its compliance against upcoming performance standards.
- The Availability of system performance data is crucial for better modelling of error processes in satnav and long term behaviour of space and control segment.
 - Such a facility can serve to enhance system engineering competence in navigation domain.

- Performance evaluation and monitoring of NavIC and other GNSS.
- Confirming the compliance to NavIC performance standards (TBD)
- To serve as repository of GNSS performance data
- Generating feedback for NavIC system performance improvement

- Receiving raw and processed observations from NavIC/GNSS receivers in real-time
- Real-time monitoring of broadcast navigation parameters
- Generation of PVT performance statistics
- Evaluation of SIS-RE performance
- Tempo-Spatial trend analysis of PVT performance and broadcast parameters
- Generating Daily, Weekly and Quarterly performance reports for NavIC.
- Archival of raw and processed data

Other use Cases

- Interference Monitoring
 - S band: Considering the possibility of terrestrial interference in S band, the facility based on network of receivers shall also aid in providing a measured monitoring of impact on S band services.
 - Can cater to other frequency bands also.
- <u>Reporting of Jamming/Spoofing events</u>
 - Based on network of NavIC/GNSS receivers and continuous monitoring thereof incidences of Jamming or spoofing can also be detected and reported upon.

Parameters of Interest

Signal Level	Broadcast Parameters	System Level
C/No Statistics	Clock Correction Parameters	Ranging accuracy & availability
Code Doppler	Ephemeris Correction	Position accuracy & availability
Carrier Doppler	Performance	 Velocity accuracy & availability
Code Phase	PVT discontinuity at Parameter	• Time & Frequency
Carrier Phase	updates	dissemination accuracy &
Code-Code	Almanac Performance	availability
Code-Carrier	URA monitoring	 DOPs Average and Worst
Carrier-Carrier	IOD Monitoring	 Overall System Availability
 Range Residue 	 Age of data performance 	• Time To Alarm
 Iono Delay 	 Secondary Messages rate 	Continuity
 Tracking Status 	 Iono grid performance 	
 Signal Availability 	Timing offsets performance	
	• 1A & 1G messaging monitoring	
	 Secondary Throughput 	
	performance	

Hardware Architecture

Receiving Stations at various Locations

Software Architecture

Some Snapshots

Data Processing

17/10/2023

ICG-17: WG-C

Way Ahead

- Hardware:
 - Augmenting the monitoring receivers with new GNSS signal/services
- Software:
 - Interference analysis and monitoring software
- Deployment:
 - Establishing monitoring receivers over various locations in country
 - Arrangement for data collection with other existing monitoring receivers (within and outside country)
- Generation of NavIC/GNSS performance evaluation reports on regular basis
- We based interface for dissemination of achieved data

Thank You for Your Kind Attention

pravinpatidar@sac.isro.gov.in

17/10/2023

ICG-17: WG-C