
Six Years of Precise Point Positioning (PPP) in WGS 84

Todd Kawakami, Stephen Malys, Kevin Kohm, Alex Smith, Andrew Tollefson, Robert Wong National Geospatial-Intelligence Agency

International Committee on GNSS (ICG-17) 15-21 October 2023, Madrid, Spain Working Group D, Reference Frames, Timing and Applications

Approved for Public Release, NGA-U-2023-02206

WGS 84 Terrestrial Reference Frame Realizations

	Implementation Date					
Name	GPS Broadcast Orbits	NGA Precise Ephemeris	Epoch	Accuracy	Alignment	
WGS 84 (TRANSIT)		1 Jan 1987		1-2 meters	Aligned to BTS 84	
WGS 84 (G730)	29 Jun 1994	2 Jan 1994	1994.0	10 cm/component rms	Aligned to ITRF91	
WGS 84 (G873)	29 Jan 1997	29 Sep 1996	1997.0	5 cm/component rms	Aligned to ITRF94	
WGS 84 (G1150)	20 Jan 2002	20 Jan 2002	2001.0	~1 cm/component rms	Aligned to ITRF00	
WGS 84 (G1674)	8 Feb 2012	7 May 2012	2005.0	~1 cm/component rms	Aligned to ITRF08	
WGS 84 (G1762)	16 Oct 2013	16 Oct 2013	2005.0	~1 cm/component rms	Aligned to ITRF08	
WGS 84 (G1762')	Jan 2016	Sept 2015	2005.0	~1 cm/component rms	Aligned to ITRF08	
WGS 84 (G2139)	30 Mar 2021	3 Jan 2021	2016.0	~1 cm/component rms	Aligned to ITRF14	

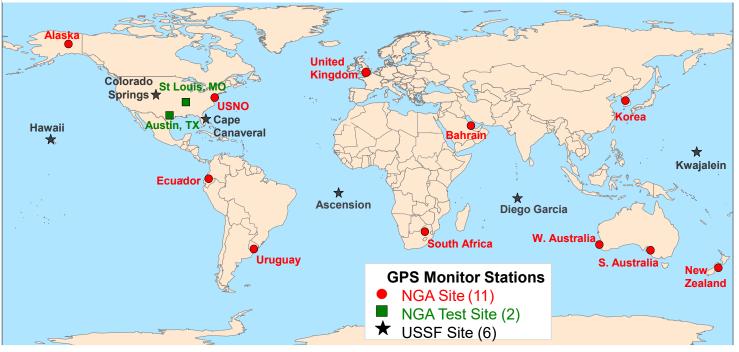
NGA

Approved for public release, NGA-U-2023-02206

Main Objective

The accuracy of a solitary GPS station in the latest realization of the WGS 84 Terrestrial Reference Frame (G2139) is the primary question of interest in this study.

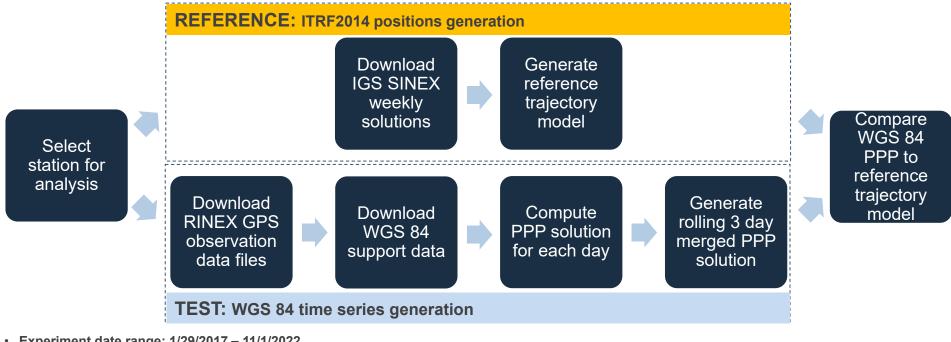
- The current NGA specification for geodetic positioning of a single GPS station is overly conservative:
 - 5 cm (1σ), in each of the three position components (φ, λ, h)
- We aim to understand current performance better.


DoD WGS 84: Its Definition and Relationships with Local Geodetic Systems, NGA.STND.0036_1.0.0_WGS84, July 2014

Approved for public release, NGA-U-2023-02206

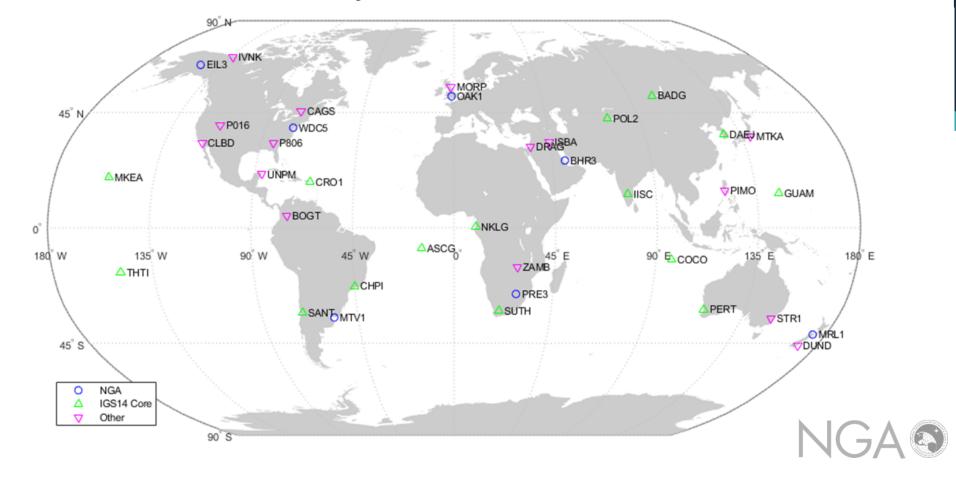
U.S. GPS Operational Monitor Station Network

Earth-centered, Earth-fixed coordinates and velocities for these stations form the basis for the Terrestrial Reference Frame realization WGS 84 G2139.



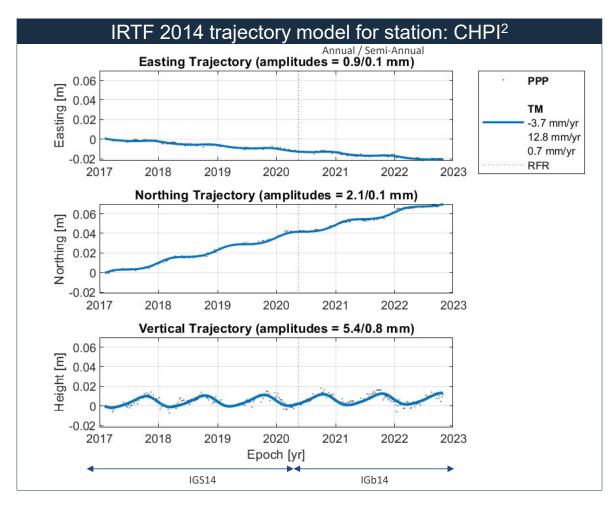
Approved for public release 21-904

NGA


Approved for public release, NGA-U-2023-02206

Experiment design compares daily WGS 84 station positions to station trajectory model from published IGS coordinates

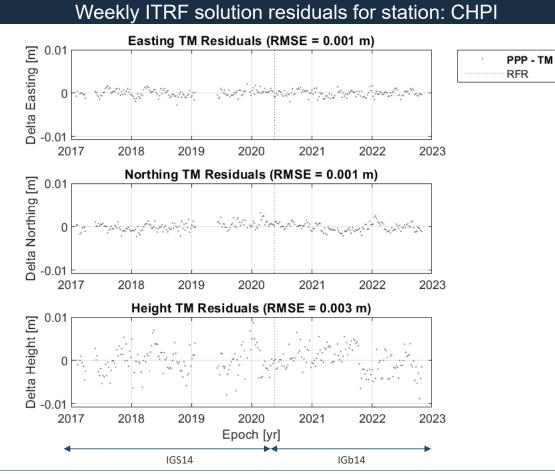
- Experiment date range: 1/29/2017 11/1/2022
- IGS frames are closely related to the corresponding ITRF frame
- Receiver observations and IGS weekly position solution data are published on NASA CDDIS: https://cddis.nasa.gov/index.html
- UNAVCO receiver observations published on: https://data.unavco.org/archive/gnss/rinex/obs/
- UNAVCO, GPS/GNSS Observations Datasets: https://doi.org/10.7283/T5SB43VC, https://doi.org/10.7283/T5NV9G67, https://doi.org/10.7283/T57D2S5N, https://doi.org/10.7283/J1GD-5S40
- PPP solutions computed using University of Texas Austin, Applied Research Laboratories, Grape software


Approved for public release, NGA-U-2023-02206

37 Stations Selected for Analysis

Approved for public release, NGA-U-2023-02206

Reference values are a trajectory model¹ fit to IGS published station positions

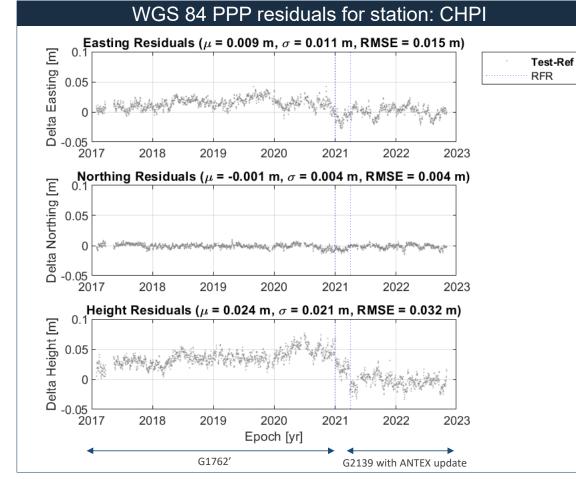

NGA

¹Bevis, M., Brown, A. (2014), Trajectory models and reference frames for crustal motion geodesy. *J Geod, 88,* 283-311

²CHPI is a IGS14 Core Network Station: Cachoeira Paulista, BR

> Approved for public release, NGA-U-2023-02206

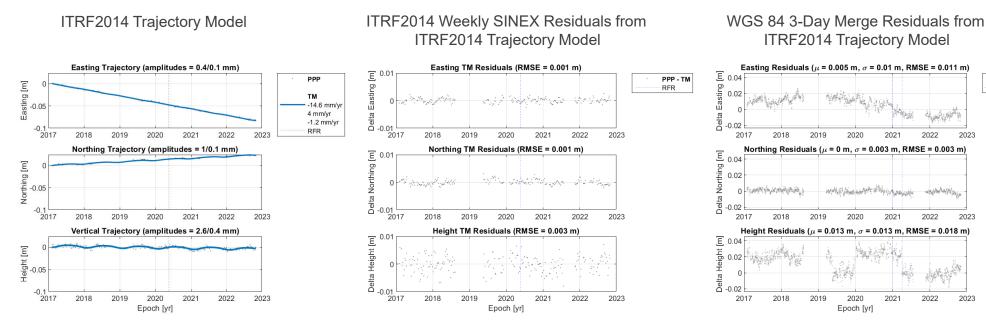
Residuals of weekly solutions to trajectory model are smaller than the 2 mm horizontal, 5 mm vertical (1σ) accuracy¹ of IGS station positions



NGA

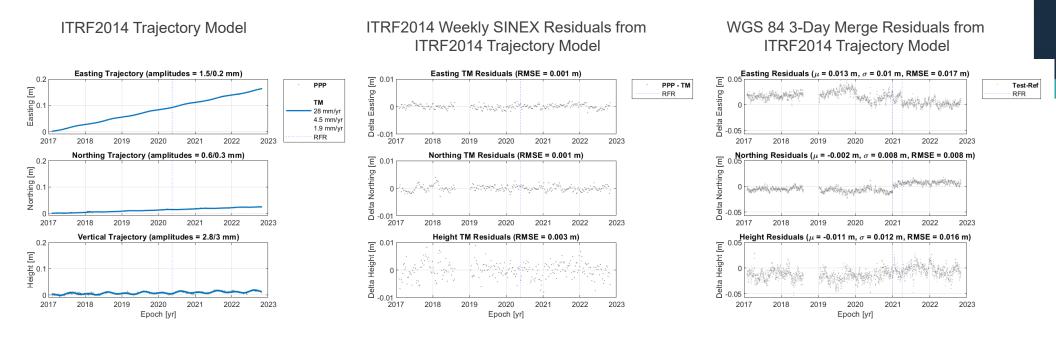
¹https://igs.org/products

Approved for public release, NGA-U-2023-02206


Residuals of WGS 84 PPP solutions from the ITRF trajectory model is the measured error in the measurement process

Approved for public release, NGA-U-2023-02206

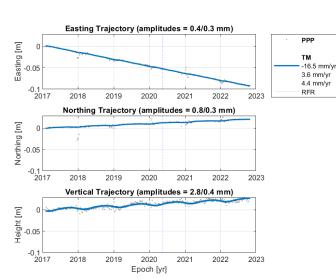
Time Series Results for WDC5 (NGA WGS 84 Reference Frame Station: USNO, USA)


NGA

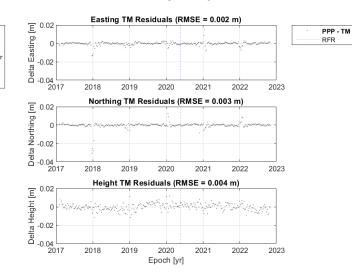
Test-Ref

RFR

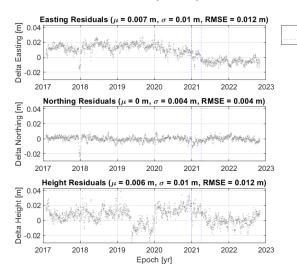
Approved for public release, NGA-U-2023-02206


Time Series Analysis for POL2 (IGS14 Core Network Station: Bishkek, KG)

NGA®


Approved for public release, NGA-U-2023-02206

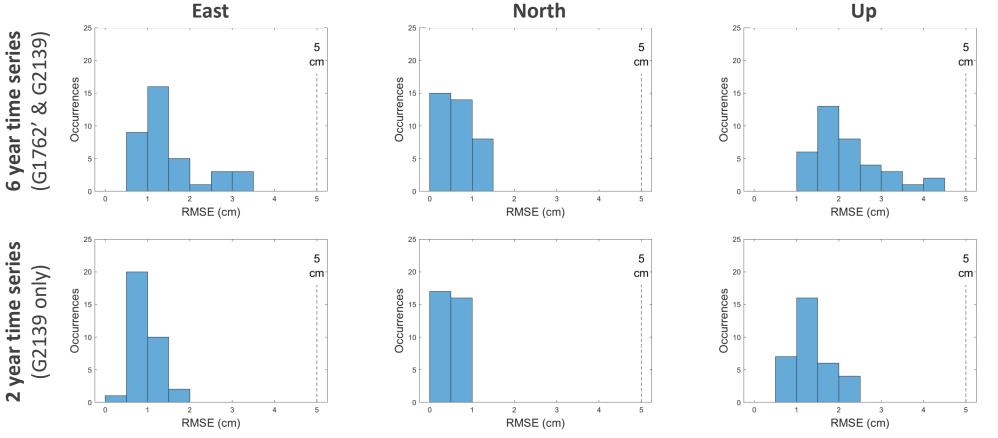
Time Series Analysis for CAGS (Additional example IGS station: Gatineau, CA)



ITRF2014 Trajectory Model

ITRF2014 Weekly SINEX Residuals from ITRF2014 Trajectory Model

WGS 84 3-Day Merge Residuals from ITRF2014 Trajectory Model


NGA

Test-Ref

RFR

Approved for public release, NGA-U-2023-02206

RMSE values for 37 stations suggest 5 cm (1 σ) per component accuracy statement is overly conservative

Approved for public release, NGA-U-2023-02206

Summary and Conclusions

- Created a 6-year time series of PPP solutions in WGS 84 G1762' and G2139 for 37 stations.
- Compared these WGS 84 time series to corresponding IGS14 time series over the same span.
- Implemented the G2139 reference frame, which yielded clear improvement.

Reference Frame	Mean (cm)			Standard Deviation (cm)			RMSE (cm)		
Realization	East	North	Up	East	North	Up	East	North	Up
6 year time series (G1762' & G2139)	0.6	-0.2	1.1	1.4	0.6	1.8	1.6	0.7	2.3
2 year time series (G2139 only)	-0.1	0.0	-0.2	0.8	0.3	1.0	1.0	0.5	1.4

NGA

Summary of the WGS 84 Terrestrial Reference Frame

- Since inception, sought to be as coincident as possible with the scientific community's best Terrestrial Reference Frame – beginning with BTS84.
- Evolved and benefited significantly from the efforts of the IERS, IGS, IVS, ILRS, and the IDS.

- IERS International Earth Rotation and Reference System Service (Since 1987)
- IGS International GNSS Service for Geodynamics (Since 1994)
- IVS International VLBI Service (Since 1987)
- ILRS International Laser Ranging Service (Since 1998) IDS International DORIS Service (Since 2003)
- Provides a global Earth-centered, Earth-fixed coordinate system for countless real-time and post-processing GPS users.
- Remains coincident with the latest ITRF on the order of 1 cm.
- Facilitates real-time interoperability with other GNSS.

Approved for Public Release, NGA-U-2023-02206