ICG Workshop on GNSS Spectrum Protection and Interference Detection and Mitigation, Changsha, China 17 May 2016

## Updates of IDM situation

Chen Li, Zhao Jia, Zhen Weimin China Research Institute of Radiowave Propagation

## Content

- 1. Background
- 2. Comparison between Beidou RNSS frequency and ITU allocation rules
- 3. Our work in GNSS interference

## 1: Background ----UN COPUOS agenda item on spectrum protection and IDM (Recommendation 10A.2)

- UN COPUOS, based on a presentation to the Science & Technology
  Subcommittee (STSC), should establish a multi-year agenda item
  focused on National Efforts to protect RNSS Spectrum, and pursue GNSS
  Interference Detection and Mitigation in member states.
- Under this agenda item, Member States will be asked to report on:
  - National RNSS Spectrum Allocations and consistency with ITU Allocations
  - Regulations regarding Non-licensed emission limits from RF emitters and non emitters
  - Planned or existing Laws and Regulations related to the manufacture, sale, export, import, purchase, ownership, and use of GNSS jammers
  - Domestic efforts to detect and mitigate GNSS interference

# 2. Comparison between Beidou RNSS frequency and ITU allocation regulations

### ITU-Radio rules(RNSS frequency band)



ITU spectrum allocation, cited from Attila Matas <Radio Navigation Satellite Service and the ITU Radio Regulations>.

### Radio frequency allocation regulations of PRC (Beidou frequency):



(1) Comparison between Beidou RNSS frequency and ITU allocation regulations

| Frequency Band of<br>Beidou | Frequency allocation of<br>P.R.C. | Frequency allocation<br>of ITU |  |  |  |
|-----------------------------|-----------------------------------|--------------------------------|--|--|--|
| B1 Frequency Band           | <b>RNSS and ARNS</b>              | <b>RNSS and ARNS</b>           |  |  |  |
| B2 Frequency Band           | RNSS、ARNS、RLS、<br>EESS and SRS    | RNSS、ARNS、RLS、<br>EESS and SRS |  |  |  |
| B3 Frequency Band           | RNSS、RLS、EESS and SRS             | RNSS、RLS、EESS<br>and SRS       |  |  |  |
| Bs Frequency Band           | RDSS、FX、MOB、MS<br>and RLS         | RDSS、FX、MOB、MS<br>and RLS      |  |  |  |

Inside the Beidou frequency band, the frequency allocation in China and the ITU regulations are exactly the same.

### (2) Regulations of the unintentional interference threshold

ICS 33.100 L 06



中华人民共和国国家标准 National standard of the People's 010 Republic of China

## 工业、科学和医疗(ISM)射频设备 骚扰特性 限值和测量方法

Industrial, scientific and medical (ISM) radio-frequency equipment— Disturbance characteristics—Limits and methods of measurement

(IEC/CISPR 11:2010,IDT)

Taking the CISPR (international special commission on radio interference) 11 as reference, a National standard of China has been made - «Industrial, scientific and medical (ISM) radiofrequency equipment - Disturbance characteristics - Limits and methods of measurement»

GB 4824-2004/CISPR 11:2003

#### 表 7 工作频率在 400 MHz 以上,

#### 产生波动连续骚扰的 2 组 B 类工科医设备的电磁辐射骚扰峰值限值

| frequency            | 頻段/GHz                       | 场强/dB/(μV/m),<br>测量距离 3 m              |     |  |  |
|----------------------|------------------------------|----------------------------------------|-----|--|--|
|                      | 1~2.3                        |                                        | 92  |  |  |
|                      | 2.3~2.4                      | field strength                         | 110 |  |  |
|                      | 2.5~5.725                    |                                        | 92  |  |  |
|                      | 5.875~11.7                   |                                        | 92  |  |  |
|                      | 11.7~12.7                    |                                        | 73  |  |  |
|                      | 12.7~18                      |                                        | 92  |  |  |
| 注 1:为了保护<br>注 2:峰值测量 | 无线电业务,国家有关者<br>采用1 MHz 分辨率带的 | 部门可能要求满足更低的限值。<br>宽和不小于 1 MHz 的视频信号带宽。 |     |  |  |

注 3: 本表限值已考虑到波动骚扰源,如磁控管驱动的微波炉。

## The relationship between power and field strength can be defined as:

 $\frac{PG}{4\pi D^2} = \frac{E^2}{120\pi}$ 

P: transmitting power in Watts D: measuring distance in meters E: field strength in Volts/meter G: the numerical gain of transmitting antenna



## **Conclusion:**

- Unlicensed equipment are not allowed to operate in RNSS band.
- The transmitting limits of ISM equipment was -55.9dBm/MHz up to 2.3 GHz which is much more strict than FCC part 15.
- There is no transmitting limits in the band of
  2.4~2.5 GHz.

(3) Laws and regulations on GNSS jammer

Main regulations related with GNSS jammer in China:

- ➢Radio Regulations of the PRC
- Prevention of interference to BSS, RNSS, MSS
- by Micro-Power (Short-Range) Radio Equipment
- Criminal Law of the PRC
- Law of the PRC on Penalties for Administration of Public Security
- Provision concerning punishment for Radio Administration



### On the ICG-9 meeting, the conclusion on GNSS jammer has been made. GNSS Jammers – National Legal Status

| Jammers     | US                                        | RU            |    | China     | EU                   |
|-------------|-------------------------------------------|---------------|----|-----------|----------------------|
| manufacture | illegal                                   | illegal       |    | illegal   | Nation-by-<br>nation |
| sell        | illegal                                   | illegal       |    | illegal   | illegal              |
| export      | illegal                                   | illegal       |    | illegal   | Nation-by-<br>nation |
| purchase    | Undefined(con<br>sumer import<br>illegal) | illegal       |    | illegal   | illegal              |
| own         | legal                                     | no restrictio | ns | undefined | legal                |
| use         | illegal                                   | illegal       |    | illegal   | Illegal              |

Import illegal also!

## 3. Our work in GNSS interference

(1) The effect analysis of interference (including the ionospheric scintillation) to infrastructure sectors.

- Mainly in the following area
  - > Transportation sector
  - Communication sector
  - > Electricity sector
  - Precision agriculture sector



# (2) Ideas in IDM system construction and research in interference detection technique

- System construction
  - IDM system structure and function
  - Work procedure of IDM data center design
- Interference detection technique
  - Study of kinds of RF interference detection technique
  - Crowd sourcing technique
  - Develop the ionospheric scintillation monitoring equipment

# Thank you!