GNSS RFI Source Localization using Flight Track Data

Gerhard BERZ
Focal Point Navigation Infrastructure
ATM Directorate, Research & SESAR Division, NAV & CNS Unit
gerhard.berz@eurocontrol.int

UN ICG Interference Detection and Mitigation (IDM) Workshop
Baska, Croatia, 9 May 2017
Overview

• Detecting GNSS Outages
 • From passive threat monitoring to active intervention in case of relevant events

• Determination of Probable Cause
 • Elimination of Non-RFI Causes

• Localization and Elimination of RFI Source
 • Supporting the chain of detection (Operator / ANSP) to confirmation, characterization and localization (radio regulator) to elimination (law enforcement)
Implementing Mitigation Barriers

Prevent Transmission of RFI
- Regulatory Control and Enforcement
- Outreach

Prevent GNSS Service Outage
- GNSS Resilience
- On-board Integration

Limit Severity of Impact
- CNS/ATM Integration
- A-PNT
- Detection & Resolution

GNSS RFI Vulnerability

Note: Limiting “success probability” of intentional RFI limits likelihood of events (exposure to detection)

Supported by Threat Monitoring Networks (Preventive & Reactive Role)
Meeting “Stated ATCO Requirement”

- Budapest GPS Outage Simulations:
 - “Tell me when event starts, when it ends, and how many sectors are affected”
 - No simple technical solutions exist today
 - Allows contingency planning through planner ATCO

- **Best to monitor at the impact source: aircraft receiver**
 - Currently, only pilot can observe receiver outage
 - Subsequent reporting requires support at regional and global level to determine probable cause (only RFI is local problem)
 - Provides essential risk assessment link on operational impact
 - Try to get as much information from the air as possible before starting search on ground: *cooperative approach for efficiency*

ATCO = Air Traffic Control Officer
GPS OUT Reporting Streams Today

GNSS Multi-Modal
Aviation one User among many

Aviation Specific
GNSS Out One Issue among many

GPS NAVCEN ➢ Airline OPS Center
➢ FOQA Monitoring?
➢ PIREP: Local AIS

ESSP ➢ AIS to Technical Services
➢ Technical Services activate subsequent process?

Local ANSP ?

IATA ➢ Eurocontrol Network Manager

No aggregate vision of events ➔ Incomplete threat picture
Resolution depends on awareness of many individuals
Implemented: GNSS in EVAIR

• EVAIR = Eurocontrol Voluntary ATM Incident Reporting
 • Established Safety Process (Confidentiality, Anonymity)
 • 250 Participating Aircraft Operators
 • Coverage: Europe, Middle East, Northern Africa
 • Close cooperation with IATA
 • Part of Network Manager Functions

• Info Bulletin sent beginning 2015 and mid-2016
 • Initial wave of reports received covering 2013/2014
 • Additional reports coming in every few weeks
 • GNSS Outage one issue among many
 • Simple to set up because it is an existing process / framework
 • Sending further awareness materials to aircraft operators
GPS Outages - Phases of flights
2013-2016

ENR 93%

GND 1%

TOF 1%

APP 5%

APP/LND 0%
B777 is most flown type in areas most affected

Most Events Occur at Night!
Specific Actions already facilitated by EVAIR:
- *Information Bulletin* sent to Airspace Operators in Black Sea / Caspian Sea Region
- NOTAM Issued by Turkey’s DHMI (Ankara Region)
Geographic Distribution of Events
(as of SEP 2016)

ECAC = European Civil Aviation Conference
Identification of Probable Cause Through Elimination

Due to Constellation / Satellite ?
- CSP Centers (GPS NAVCEN, etc.)
- Augmentation User Support (ESSP, etc.)

If all else can be excluded, must be RFI !
- Local Verification & Resolution

Due to Space Weather ?
- Space Wx Agencies (NOAA, etc.)
- Iono Monitoring Networks

Reported GNSS Outage Event

Due to Receiver Problem ?
- Receiver Manufacturers
- Avionics Integrators
- Civil-Military Coordination, NATO National Defense

Due to Military Testing ?
Moving Towards RFI Localization Support

• Primary current method to detect potential RFI is pilot reporting
 • Pilot reporting by nature not precise about location of event
 • Developing process of what to do with reports
 • Evaluating if meaningful localization can be made possible if flight track data is made available

• Prerequisite is that relatively precise lat/lon/ht of GNSS Outage event start and end is available
 • Either through ADS-B or other airline data reporting system
 • Possible for single, omnidirectional and static RFI source only
 • If search inconclusive using this method, could also be a valuable data point to suspect more sophisticated threat

• Objective is to reduce RFI source search area for State and reduce associated intervention time
Flight Track Data Possibilities?

- If precise report of start and stop coordinate of outage event are known, bisector line of potential RFI source location can be derived
 - Assumes omnidirectional RFI source and constant aircraft altitude
 - Assumes that loss of tracking and reacquisition thresholds are similar
 - Multiple aircraft reports could lead to localization
- Within limits, a minimum power level can also be hypothesized
Modelling and Visualisation in DEMETER

- GPS track 1 (eastbound)
- GPS track 2 (southbound)
- Possible RFI position
Figure removed. Work ongoing to obtain agreement from ANSP to show location of outages.
[Confidentiality vs. Anonimity: Position Data is never anonymous]

Actual cases will always be coordinated with the ANSP responsible for the affected airspace.
FlightAware Coverage
FlightAware Coverage
RFI Localization Process

• EVAIR Reports serve as a trigger for further investigation
 • First check to eliminate non-RFI causes as much as possible
• Then need to rely on public domain ADS-B sources
 • Manage coverage and data quality issues
 • Limitations on data history
 • Limitations on track distribution (due to route network)
 • Recall earlier findings (CNS Team, Avionics White List)
• Options to be investigated:
 • Framework agreement with ADS-B data providers?
 • Publication on Network Manager Operations Portal Nconnect
 • Further investigation of aircraft installed GNSS Rx tracking and acquisition thresholds as a function of ground based RFI type and main airframe type?
 • Future Alternatives: GNSS RX Data, Global Flight Tracking?
Summary

- GNSS RFI Mitigation continues to be an exercise in setting up interfaces
 - Current effort on ADS-B track data providers
 - Other venues to be developed: GNSS providers, multi-modal projects (EC), Aircraft OEM’s, Airline FOQA Systems, NATO?
 - Developing “GNSS Information Concept” to know what to make available to aircrews and how (NOTAM or alternate channels)
 - *Happy to consider any data source incl. ground monitors!*

- Focus on short-term implementable options that approach stated ATCO requirement (“tell me which sectors are affected”)

- AOB: Related IFIS and ION Paper: RFI Localization using CRPA
 - Published in GPS World Magazine

Requests to UN ICG IDM Workshop

• Support information exchange for aviation with GNSS system operators
 • For both threat monitoring and significant event mitigation
 • Help to identify non-RFI causes (space weather, receiver issues if aware)

• Forward aviation relevant reports to relevant entities (States, Regional Organizations)
Back-Ups

- ADS-B Details
Sydney Case: ADS-B Lessons Learned

- ADS-B reports key to identifying probable source location: Aerospace Industrial Park
 - “Search” proved sufficient to terminate 3h event
- Most Ground Monitor Stations didn’t see RFI
 - Some outages on WAM network, but difficult to locate
 - Need to evaluate line of sight

- Lessons Learned
 - Aircraft with INS didn’t lose NAV
 - Contingency procedures worked
 - Some aircraft GPS receivers didn’t recover (even on turnaround!)
 - Air Services Australia recommends recording of GPS status on QAR
 - Ground and aircraft based localization must work in complement
 - Implementation simplest if within existing processes & infrastructure
ADS-B PIC Use for GNSS Monitoring

• ADS-B:
 • Different versions of the ADS-B Out MOPS in use
 • Different ways to encode integrity
 • Not all aircraft are “proper” ADS-B Out:
 • Version 0 implemented on voluntary basis (along with Mode S mandates, ADS-B only certified on a non-interference basis)
 • Later AMC 20-24 certification only applies to subset of fleet
 • Not necessarily using GNSS as position source
 • Some known avionics issues with version 0

• GNSS:
 • Different levels of performance
 • Limited information about the position source (SA On/Off, SBAS etc.)
ADS-B based GNSS Monitoring: Issues

• Difficult Capability to Test without significant RFI Event
 • Study tried to correlate ADS-B Position Integrity Category with events:
 • Known RFI Events
 • Predicted RAIM Outages
 • Iono Events
 • None of the investigated events produced reliable correlation

• But learned about use of ADS-B data
 • Careful filtering of reliable data – establish white list?
 • On-board issues usually result in a certain NUCp/NIC behaviour
 • not so common – can be filtered out
 • Most of the fleet has stable quality indicators
 • SPI IR implementation of ADS-B Out version 2 (ED-102A / DO-260B) expected to further improve the picture

• Still think that method has promise at least for “massive” RFI events
Position Integrity Category

- Ground system notation (Asterix) for integrity containment bound encoding

<table>
<thead>
<tr>
<th>PIC</th>
<th>Integrity Containment Bound</th>
<th>NUCp ED102/DO260</th>
<th>NIC (+ suppl.) DO260A</th>
<th>NIC (+ suppl.’s) ED102A/DO260B</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>not defined</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>< 0.004 NM</td>
<td>9</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>< 0.013 NM</td>
<td>8</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>< 0.04 NM</td>
<td></td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>< 0.1 NM</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>< 0.2 NM</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>< 0.3 NM</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>< 0.5 NM</td>
<td>5</td>
<td>6 (+ 0)</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>< 0.6 NM</td>
<td></td>
<td>6 (+ 1)</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>< 1.0 NM</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>< 2.0 NM</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>< 4.0 NM</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>< 8.0 NM</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>< 10.0 NM</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>< 20.0 NM</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>No integrity (or > 20.0 NM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>