Development and Operation of a GPS Jammer Localization System at the Airport

Deok Won Lim Korea Aerospace Research Institute

Contents

GPS jamming cases in Korea

4 cases after 2010

	1 st (2010.8.23~26)	2 nd (2011.3.4~14)	3 rd (2012.4.28~5.13)	4 th (2016.3.31~4.5)
Reported Influence	Western coast area	West borde	r (Near to Seoul) & I	East border
	►181 WCSs	►145 WCSs	►64 WCSs	▶1,786 WCSs
	►15 Aircrafts	►106 Aircrafts	►1,015 Aircrafts	▶962 Aircrafts
	▶1 Ship	►10 Ships	►122 Ships	►694 Ships

****** WCS : Wireless Communication Station

GPS jamming cases in Korea

Jamming signal was from North Korea

GPS jamming cases in other countries

- Newark airport in 2010
 - LGF(LAAS Ground Facility) was jammed
 - From PPD(Personal Privacy Devices)

Courtesy of John Warburton and Carmen Tedeschi, "GPS Privacy Jammers and RFI at Newark," IGWG12, November 2011.

GPS jamming cases in other countries

- Hannover airport in 2010
 - Enhanced Ground Proximity was jammed
 - Due to the GPS repeater

Courtesy of ICAO Information Paper ACP-WGF23/IP-21

Countermeasures for GPS jamming/interferences

- A/J techniques in a GPS receiver
 - Array antenna techniques
 - Digital filtering techniques
- Integrated systems
 - ILS (Instrument Landing System)
 - DME (Distance Measuring Equipment)
 - VOR (VHF Omni-directional Range)
- Monitoring systems
 - IDM (Interference Detection & Mitigation)
 - CORS (Continuously Operating Ref. Station)
- Localization system
 - Detection & Localization

Not sufficient to guarantee accuracy

Guarantee only integrity

Guarantee integrity/continuity

System Design

System Description

- Prototype
- 4 Receiver Stations, a Central Processing Station, a Monitoring Station

<Concept of a jammer localization system>

System Design

System Specifications

System Performance			Type of jamming signals		
Accuracy	< 50 m (CEP), for a jammer located at 10km away	way CW		 Single tone signal Used by North Korea mostly 	
Detection time	< 6 s		DSSS	- GPS-like signals - Used at Hannover airport	
Sensitivity -107 dBm			Swept CW	 Frequency varying CW signal Used at Newark airport 	

System Design

Algorithms

Features of algorithms for localization

Algorithm	Accuracy	Complexity	Limitations
TOA (Time of Arrival)	Good	Moderate	Not applicable to unknown signals
RSSI (Received Signal Strength Identification)	Not that accurate	Low	Not applicable to unknown signals
AOA (Angle of Arrival)	Adequate	High (Array antennas and RF circuits)	Heading of array antennas of each receivers should be aligned
TDOA (Time Difference of Arrival)	Good	Moderate	Clocks of each receivers should be synchronized
RSSD (Received Signal Strength Difference)	Not that accurate	Low	Relatively high receiver power

Development

- Receiver Station
 - Includes array antenna, RF/IF and digital circuits and other sensors

Development

- Verification of functionality
- Verification of RF channel mismatches in RF/IF circuits

Development

Measuring antenna mismatches in an anechoic chamber

Development

Performance of time synchronization between Receiver Stations

Development

- Central Processing Station
 - Includes Linux severs for algorithm processing and web-browser
- Monitoring Station

Development

System verification in indoor environment

16

Installation

In Incheon International Airport in Nov. 2014

Installation

In Incheon International Airport in Nov. 2014

Central Processing Station

Monitoring Station

- Signal amplitude on Mar. 31, 2016
 - Since 19:35, jamming signal was detected
 - Signals received at RS#2 were stronger than the others

- Signal amplitude in Apr. 5, 2016
 - Ended after 14:30

- Characteristics of jamming signal
 - Frequency spectrums of signals at 7:38:19 and 7:38:20
 - Jamming signals were time-varying or hopping and with multiple signals

- Estimation of azimuth angle
 - By using the signals of RS#2
 - MUSIC algorithm was operated in post-processing

Date	Mean (deg.)	STD (deg.)
April 1	28.38	1.24
April 2	26.70	0.75
April 3	27.43	0.94
April 4	23.98	1.02
April 5	26.36	1.02

- Estimation of azimuth angle
 - The azimuth angle indicates Gaesung, North Korea

Conclusions

Summary

- Features of the localization system and algorithms
- Results for the system development, verification, and installation
- Analyzed results for the real jamming case

Thank you for your attention

dwlim@kari.re.kr

