

GNSS Interference Monitoring from Space

Francisco Amarillo Fernandez

ESA ESTEC

23/08/2021

ESA UNCLASSIFIED - For ESA Official Use Only

*

The RFI-LEOM Project designs a GNSS spectrum monitoring-system, for Galileo open service signals and other GNSS signals, based on space-borne monitors at LEO orbit, enabling detection, characterization & localization of ground-based interferers over very wide areas. It is an ESA Phase 0 exploratory study, which does not convey any programmatic decision

- Flight experiments by means of radio-occultation GNSS receiver on board the International Space Station performed by U.S. Naval Research Laboratory, have demonstrated monitor feasibility ("Serendipitous Observations of GPS. Interference by GROUP-C on the ISS").
- The Project has closed the System Requirements Review (SRR) and is approaching its Preliminary Design Review (PDR).

Techniques for Monitoring and Localisation

<u>Very large number of monitoring methods for RFI detection</u>. Some examples:

- Analysis of anomalies on the signal stream properties:
- Frequency domain: by Fourier transform analysis
- Time domain: by correlators output analysis (e.g. statistics)
- □ Analysis to its conformance to predefined RFI signals:
- Chirp signals, by Fractional Fourier transform analysis
- Pulsed signals by correlation with a pulse-mask analysis.

Localisation Techniques. DOA.

- Antenna array processing technique.
- Linear combination (complex coefficients) of instances of the interference signal, each with a different delay (i.e. different antenna element).

☐ For <u>generic interferer</u>:

- Coefficients vector choice minimize output power pre-correlation, for given vector norm.
- Shapes antenna pattern by minimizing gain towards interferer(s) direction.

Localisation Techniques. DOA.

- Antenna array processing technique.
- Linear combination (complex coefficients) of instances of the interference signal, each with a different delay (i.e. different antenna element).

■ For predefined RFI(*):

- Coefficients vector choice maximize output power post-correlation, for given vector norm.
- Shapes antenna pattern by maximizing gain towards interferer(s) direction.

(*) prior knowledge on interference signal at RX

Localisation Techniques. TDOA.

Conceptual measurement: time, from on-board clock, at which interference condition is detected.

 $t_j = t + p_j(t) + c_j + b_{jc} + b_{jd}$

- p_j (t): propagation time from emission at time t, upon arrival to LEOj antenna.
- c_i : on board clock error (known from GNSS RX)
- *b_{jc}*: common latency of the interference monitor (can be interference-type specific)
- b_{js}:satellite delays
- Actual measurement: signal-fragment simplified description (e.g. spectrum) over successive chunks.

Localisation Techniques. TDOA.

- Signal-fragments simplified description delivered to Processing Centre, via Gateway stations, what may require of a considerable time.
- Processing signal-fragments from different LEO satellites allows identification of common interference events, and their TOAs at each LEO.
- Differential TOA (DTOA) cancels common monitor related errors on TOA (some interference specific)

$$\{ \Delta t_{j,k} \}_{j,k} \approx \{ p_j(t) - p_k(t) \}_{j,k}$$

Localisation Techniques. TOA.

Conceptual measurement: time, from on-board clock, at which interference condition is detected.

 $t_j = t + p_j(t) + c_j + b_{jd}$

- *p_j*(t): propagation time from emission at time *t*, upon arrival to LEO*j* antenna.
- c_i : on board clock error (known from GNSS RX)
- b_{jd}:satellite delays

□ Actual measurement: pseudo-range LEO*j* - Interferer.

Localisation Techniques. TOA.

- Pseudo-ranges delivered to Processing Centre, via Gateway stations, what may require of a considerable time.
- Processing pseudo-ranges from different LEO satellites allows PVT of jammer, because LEO positions and clocks are known (GNSS RX).
- ❑ Much higher achievable accuracy.

Space System for Monitoring and Localisation

Space System. Constellation.

- D/U-communication equipment:
- Relays signals description to gateway
- □ ISL-communication equipment (option):
- Relays signals description from/to the rear to/from the front satellite, and integrates in this flow the signals description from the monitor.

□ For <u>generic interferer</u>:

In each cell: number of common interferers (per set of analysed fragments)

RFI-LEOM Monitor:

- <u>Cross-correlation software analysis processing</u> signal description fragments:
- Multiple RFI signals may exist simultaneously.
- <u>Coarse localization</u>: from DTOA measurements analysis, screening different hypothesis in terms of space-time coordinates of the interferer.
- Fine localization: from DTOA measurements linearized observations equations.
- <u>Redundancy check</u>: based on the analysis of the DTOA measurements residuals in the linearized observation equations.

RFI-LEOM System Targets.

÷

Service Volume

Volume 1	 Latitude: [+20°, +80°] Longitude : [-40°, +40°] Height: [Sea-level/Ground-level, 20000 m] 	RFI-LEOM System Maximum performance
Volume 2	 Latitude: [-090°, +090°] Longitude : [-180°, +180°] Height: [Sea-level/Ground-level, 20000 m] 	RFI-LEOM System Minimum performance

Note: for ISL option RFI-LEOM system maximum performance globally

→ THE EUROPEAN SPACE AGENCY

RFI-LEOM Project. Performance Targets.

<u>Monitored sub-bands within Galileo open service signals - possibility to extend for other</u> <u>GNSS signals</u>

Sub-band name	<u>Central carrier (*)</u>	Bandwidth ^(**)			
GAL E5a	115 <u>fo</u>	40.920 MHz			
GAL E5b	118 <u>fo</u>	40.920 MHz			
GAL E1	154 <u>fo</u>	16.368 MHz			
GAL E6	125 <u>fo</u>	20.460 MHz			
(*) Note: fo = 10.23 MHz					
(**) Note: including main lobe plus side lobe					

RFI-LEOM System capability.

Monitoring Functions	 Spectrum sampling Power time series Polarization Direction of arrival 			
Performance	Volume 1	High power interferers	Coarse-detection latency < 05 minutes Coarse-localisation error < 10 Km Fine-detection latency < 60 minutes Fine-localisation error < 01 Km Note: for ISL option near-real time.	
	Volume 2	High power interferers	Under evaluation.	

RFI-LEOM Project. Implementation constrains.

RFI-LEOM Implementation constrains.

Number of LEO satellites hosting RFI-LEOM instrument	< 100
Space borne RFI-LEOM instrument mass	< 30 Kg
Space borne RFI-LEOM instrument antenna envelope	< 50 cm (max diameter)

- RFI-LEOM is a running exploratory study, which designs a spectrum monitoringsystem, for Galileo OS signals, based on space-borne monitors at LEO orbit.
- Targets the detection of generic and predefined RFI.
- Provides worldwide coverage, including oceans.
- Provides RFI localization by means of TDOA, TOA and DOA techniques
- Based on architecture in which the satellites are sensors, & the actual detection and localization is based on ground processing.
- Minimum performance targets have been identified.

Thank you for your attention

